From c91500a7c44bee10db0250ed4c99d7d49ec51ae1 Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Mon, 3 Jul 2000 09:15:26 +0000 Subject: [PATCH] Strip more comments in order to make this thing more distributable. git-svn-id: https://svn.dealii.org/trunk@3122 0785d39b-7218-0410-832d-ea1e28bc413d --- tests/deal.II/wave-test-3.cc | 1020 +--------------------------------- 1 file changed, 3 insertions(+), 1017 deletions(-) diff --git a/tests/deal.II/wave-test-3.cc b/tests/deal.II/wave-test-3.cc index 785d860baf..da56739b84 100644 --- a/tests/deal.II/wave-test-3.cc +++ b/tests/deal.II/wave-test-3.cc @@ -2,7 +2,7 @@ // $Id$ // Version: $Name$ // -// Copyright (C) 1998, 1999, 2000 by the deal.II authors +// Copyright (C) 1998, 1999, 2000 by Wolfgang Bangerth // // This file is subject to QPL and may not be distributed // without copyright and license information. Please refer @@ -372,87 +372,16 @@ template class TimeStep_Dual; template class DualFunctional { public: - /** - * Constructor. Specify whether an - * actual functional needs the primal - * solution at all times or at the - * endtime. Default is #false# is - * both cases which means that the - * functional is linear. - */ DualFunctional (const bool use_primal_problem = false, const bool use_primal_problem_at_endtime = false); - - /** - * Return that part of the dual functional - * related to a delta function in time at - * the end time. - * - * The default is to return zero. - */ virtual void compute_endtime_vectors (Vector &final_u_bar, Vector &final_v_bar); - - /** - * Return that part of the dual functional - * related to the regular time integral. - * - * The default is to return zero. - */ virtual void compute_functionals (Vector &j1, Vector &j2); - - /** - * Return whether this object uses - * information from the primal problem - * (i.e. whether it is nonlinear or not). - * The necessary information is set in - * the constructor. - * - * This function refers to all times. - */ bool use_primal_solutions () const; - - /** - * Return whether this object uses - * information from the primal problem - * (i.e. whether it is nonlinear or not). - * The necessary information is set in - * the constructor. - * - * This function refers to the solution - * at the end time. There are functionals - * which only evaluate at the endpoint - * but are nonlinear anyway. For them it - * is not necessary to reload the primal - * data at other times than the end time. - */ bool use_primal_solutions_at_endtime () const; - - /** - * Reset the functional to the present - * time level. This function needs to be - * called at each time level if the - * functional is nonlinear and at the - * endtime if the functional is nonlinear - * only at the endtime. - */ virtual void reset (const TimeStep_Primal &primal_problem); - - /** - * Reset the functional to the present - * time level. This function needs to be - * called at each time level. It resets - * pointers to the dof handler, the - * triangulation and several other - * objects which are needed to compute - * the dual functional. - */ virtual void reset (const TimeStep_Dual &dual_problem); - - /** - * Exception - */ DeclException0 (ExcPrimalProblemNotRequested); protected: @@ -481,165 +410,79 @@ class DualFunctional { }; -/** - * Compute the dual functional which is approximately associated - * with the end time energy in the high atmosphere above 4000km. - * The energy in a domain $D$ is given by - * $E_D = \int_D (v^2 + \nabla u a \nabla u)_{t=T}$ and the - * associated functional for the error is approximately - * $J(\Psi) = \int_D v_h(T) \psi + \nabla u_h(T) a \nabla \phi$. - */ template class EndEnergy : public DualFunctional { public: - /** - * Constructor. - */ EndEnergy (const bool use_primal_problem_at_any_time = false); protected: enum PartOfDomain { low_atmosphere, high_atmosphere }; - - /** - * Compute the initial values of the - * dual problem. - */ void compute_vectors (const PartOfDomain pod, Vector &final_u_bar, Vector &final_v_bar) const; }; -/** - * Let the point value of $u$ at the origin integrated over time - * be the goal. - */ template class IntegratedValueAtOrigin : public EndEnergy { public: - /** - * Evaluate the dual functionals and - * return the right hand side contributions - * thereof for the present time step. - */ virtual void compute_functionals (Vector &j1, Vector &j2); - - /** - * Exception. - */ DeclException0 (ExcVertexNotFound); }; -/** - * Dual function corresponding to the #EvaluateSeismicSignal# class. - */ template class SeismicSignal : public DualFunctional { public: - /** - * Evaluate the dual functionals and - * return the right hand side contributions - * thereof for the present time step. - */ virtual void compute_functionals (Vector &j1, Vector &j2); }; -/** - * Compute the dual problem associated with the functional - * $J(\Psi) = \int u ds$ with the integral being over some - * parts of the boundary. - */ template class EarthSurface : public DualFunctional { public: - /** - * Evaluate the dual functionals and - * return the right hand side contributions - * thereof for the present time step. - */ virtual void compute_functionals (Vector &j1, Vector &j2); }; -/** - * Compute $J(\Psi) = \int_0^0.25 u(x=2,y,t=2.2) dy. - */ template class SplitSignal : public DualFunctional { public: - /** - * Evaluate the dual functionals and - * return the right hand side contributions - * thereof for the present time step. - */ virtual void compute_functionals (Vector &j1, Vector &j2); }; -/** - * 1d test case, evaluating the region (-.5,.5) at the endtime. Intended for some - * tests on split triangulations with one fine and one coarse region. - */ template class SplitLine : public DualFunctional { public: - /** - * Compute the initial values of the - * dual problem. - */ void compute_endtime_vectors (Vector &final_u_bar, Vector &final_v_bar); }; -/** - * Compute $J(\Psi) = \int_{-0.6}^{-0.4} u(x,t=2.5) dx. - */ template class OneBranch1d : public DualFunctional { public: - /** - * Evaluate the dual functionals and - * return the right hand side contributions - * thereof for the present time step. - */ virtual void compute_functionals (Vector &j1, Vector &j2); }; -/** - * Compute $J(\Psi) = \int_{-0.1}^{0.1} u(x,t=2.4) dx. - */ template class SecondCrossing : public DualFunctional { public: - /** - * Evaluate the dual functionals and - * return the right hand side contributions - * thereof for the present time step. - */ virtual void compute_functionals (Vector &j1, Vector &j2); }; -/** - */ template class HuyghensWave : public DualFunctional { public: - /** - * Evaluate the dual functionals and - * return the right hand side contributions - * thereof for the present time step. - */ virtual void compute_functionals (Vector &j1, Vector &j2); }; @@ -647,17 +490,6 @@ class HuyghensWave : public DualFunctional { -/** - * This class provides a simple interface to do arbitrary evaluations of - * the numerical solution. Concrete classes implementing evaluations - * need access to the solution vectors #u# and #v# as well as to the - * triangulation and the associated degrees of freedoms, which is what - * this class provides. This way is chosen to separate the problem - * classes which do the actual solution from the evaluation classes, since - * they don't need to know much about the solution classes apart from - * the solution itself. Thus, we reduce dependencies which speeds up - * compilation and makes software engineering more simple. - */ template class EvaluationBase { public: @@ -2072,8 +1904,6 @@ void EndEnergy::compute_vectors (const PartOfDomain pod, for (; cell!=endc; ++cell, ++primal_cell) { - // only consider cells in the specified - // domain switch (pod) { case low_atmosphere: @@ -2092,17 +1922,11 @@ fe_values.reinit (cell); fe_values_primal.get_function_values (*v, local_v); fe_values_primal.get_function_grads (*u, local_u_grad); - // get the coefficients at the - // quadrature points density->value_list (fe_values.get_quadrature_points(), density_values); stiffness->value_list (fe_values.get_quadrature_points(), stiffness_values); - // set up a vector of the gradients - // of the finite element basis - // functions on this face at the - // quadrature points const vector > > &shape_grads = fe_values.get_shape_grads (); const FullMatrix &shape_values = fe_values.get_shape_values (); const vector &JxW_values (fe_values.get_JxW_values()); @@ -2200,9 +2024,6 @@ void SeismicSignal::compute_functionals (Vector &j1, if (face=cell->face(face_no), (face->vertex(0)(1) == y_offset) && (face->vertex(1)(1) == y_offset)) - // this is one of the faces we - // are interested in, i.e. which - // lie on the interesting line { fe_face_values.reinit (cell, face_no); const FullMatrix &shape_values = fe_face_values. @@ -2211,10 +2032,6 @@ void SeismicSignal::compute_functionals (Vector &j1, get_JxW_values()); const vector > &q_points (fe_face_values.get_quadrature_points()); - // now compute the local integral - // \int w(x,t) phi_i(x,y,t) ds - // through this line for each - // of the basis functions vector local_integral (dofs_per_cell, 0); for (unsigned int shape_func=0; shape_func::compute_functionals (Vector &j1, ++face_no) if (face=cell->face(face_no), face->at_boundary()) - // this is one of the faces we - // may be interested in { - // find out whether it is part of - // the boundary portions we are - // looking for const double x = face->center()(0), y = face->center()(1); @@ -2274,13 +2086,10 @@ void EarthSurface::compute_functionals (Vector &j1, ((x>0) && (y<0) && (fabs(x+y)<500)))) continue; - // doubtful for higher - // order elements! const double h = face->measure (); face->get_dof_indices (face_dof_indices); for (unsigned int shape_func=0; shape_func::compute_functionals (Vector &j1, for (unsigned int face_no=0; face_no::faces_per_cell; ++face_no) if (cell->face(face_no)->center()(0) == 1.5) - // this is one of the faces we - // may be interested in { face=cell->face(face_no); - // check whether it really is bool wrong_face = face->center()(1) > 0.0625; if (!wrong_face) for (unsigned int v=0; v::vertices_per_face; ++v) @@ -2348,8 +2154,6 @@ void SplitSignal::compute_functionals (Vector &j1, for (unsigned int j=0; j::compute_functionals (Vector &j1, j1.reinit (dof->n_dofs()); j2.reinit (dof->n_dofs()); - // take the time step right before 2.5 if ((time<=2.5-time_step) || (time>2.5)) return; @@ -2449,8 +2252,6 @@ void OneBranch1d::compute_functionals (Vector &j1, sum += shape_values(i,j) *JxW_values[j]; - // since we integrate over each face - // twice, add only half of it j1(dof_indices[i]) += sum; }; }; @@ -2469,7 +2270,6 @@ void SecondCrossing::compute_functionals (Vector &j1, j1.reinit (dof->n_dofs()); j2.reinit (dof->n_dofs()); - // take the time step right before 2.4 if ((time<=2.4-time_step) || (time>2.4)) return; @@ -2525,13 +2325,10 @@ void HuyghensWave::compute_functionals (Vector &j1, for (unsigned int vertex=0; vertex::vertices_per_cell; ++vertex) if (cell->vertex(vertex) == evaluation_point) { - // step down the list of children - // until we find a terminal cell DoFHandler::cell_iterator terminal_cell = cell; while (terminal_cell->has_children()) terminal_cell = terminal_cell->child(vertex); - // now terminal cell is the right one j1(cell->vertex_dof_index(vertex,0)) = time*time_step; point_found = true; @@ -2542,7 +2339,6 @@ void HuyghensWave::compute_functionals (Vector &j1, }; -// explicit specializations template class DualFunctional<2>; template class EndEnergy<2>; @@ -2671,8 +2467,6 @@ double EvaluateEnergyContent::compute_energy (const PartOfDomain pod) const for (; cell!=endc; ++cell) { - // only consider cells in the specified - // domain switch (pod) { case low_atmosphere: @@ -2694,7 +2488,6 @@ fe_values.reinit (cell); cell->get_dof_values (*u, local_u); cell->get_dof_values (*v, local_v); - // compute mass matrix cell_matrix.clear (); density->value_list (fe_values.get_quadrature_points(), density_values); @@ -2708,8 +2501,6 @@ fe_values.reinit (cell); total_energy += 1./2. * cell_matrix.matrix_norm_square (local_v); - // now for the part with the laplace - // matrix cell_matrix.clear (); stiffness->value_list (fe_values.get_quadrature_points(), stiffness_values); @@ -2836,7 +2627,6 @@ double EvaluateSeismicSignal::evaluate () { for (; cell!=endc; ++cell) for (unsigned int face=0; face::faces_per_cell; ++face) - // check if face is at top boundary if (cell->face(face)->center()(1) == 1.0) { face_values.reinit (cell, face); @@ -2851,7 +2641,6 @@ double EvaluateSeismicSignal::evaluate () { JxW_values[point]; u_integrated += local_integral; - // output the t and x coordinate out << time << ' ' << cell->face(face)->vertex(0)(0) @@ -2925,12 +2714,9 @@ double EvaluateSplitSignal::evaluate () { for (; cell!=endc; ++cell) for (unsigned int face_no=0; face_no::faces_per_cell; ++face_no) - // this is one of the faces we - // may be interested in if (cell->face(face_no)->center()(0) == 1.5) { DoFHandler::face_iterator face=cell->face(face_no); - // check whether it really is bool wrong_face = face->center()(1) > 0.0625; if (!wrong_face) for (unsigned int v=0; v::vertices_per_face; ++v) @@ -2953,8 +2739,6 @@ double EvaluateSplitSignal::evaluate () { u_integrated += local_integral; }; - // note that we integrate over each line twice, so - // we divide the result by two if (time!=0) result += u_integrated*time_step / 2; @@ -3149,13 +2933,10 @@ double EvaluateHuyghensWave::evaluate () for (unsigned int vertex=0; vertex::vertices_per_cell; ++vertex) if (cell->vertex(vertex) == evaluation_point) { - // step down the list of children - // until we find a terminal cell DoFHandler::cell_iterator terminal_cell = cell; while (terminal_cell->has_children()) terminal_cell = terminal_cell->child(vertex); - // now terminal cell is the right one value_at_origin = (*u)(cell->vertex_dof_index(vertex,0)); point_found = true; @@ -3174,7 +2955,6 @@ double EvaluateHuyghensWave::evaluate () }; -// explicit instantiations template class EvaluationBase<2>; template class EvaluateEnergyContent<2>; template class EvaluateIntegratedValueAtOrigin<2>; @@ -3243,9 +3023,6 @@ deallog << "Sweep " << setw(2) << sweep_no << ':' << endl start_sweep (sweep_no); - // attach the present sweep_info object - // to all the time steps. also for - // the sweep_data object for (vector::iterator timestep=timesteps.begin(); timestep!=timesteps.end(); ++timestep) { @@ -3290,7 +3067,6 @@ void TimestepManager::refine_grids () const unsigned int n_timesteps = timesteps.size(); - // first collect all the error indicators vector > indicators (n_timesteps); for (unsigned int i=0; iget_timestep_postprocess().get_tria_refinement_criteria (indicators[i]); -// count the number of cells for some - // statistics and other things unsigned int total_number_of_cells = 0; for (unsigned int i=0; i all_indicators (total_number_of_cells); unsigned int next_index=0; for (unsigned int i=0; i partial_sums(all_indicators.size()); @@ -3404,7 +3164,6 @@ if (parameters.compare_indicators_globally) } else - // refine each time step individually { deallog << " Refining each time step separately." << endl; @@ -3420,8 +3179,6 @@ if (parameters.compare_indicators_globally) this_timestep->wake_up (0); - // copy criteria and delete the old - // vector Assert (indicators.size() > 0, ExcInternalError()); Vector criteria (indicators[0]); indicators.erase (indicators.begin()); @@ -3430,8 +3187,6 @@ if (parameters.compare_indicators_globally) Vector partial_sums(criteria.size()); - // sort the largest errors to the - // beginning of the vector sort (criteria.begin(), criteria.end(), greater()); partial_sum (criteria.begin(), criteria.end(), partial_sums.begin()); @@ -3477,7 +3232,6 @@ deallog << " Got " << total_number_of_cells << " presently, expecting " template void TimestepManager::write_statistics (const SweepInfo &sweep_info) const { - // write statistics if (true) { deallog << " Writing statistics for whole sweep."; @@ -3506,7 +3260,6 @@ void TimestepManager::write_statistics (const SweepInfo &sweep_info) const }; -// write summary if (true) { deallog << " Writing summary."; @@ -3539,7 +3292,6 @@ void TimestepManager::write_stacked_data (DataOutStack &data_out_stack }; -//explicit instantiation template class TimestepManager<2>; /* $Id$ */ @@ -3692,9 +3444,6 @@ class Coefficients { public: inline virtual double value (const Point &p, const unsigned int) const { - // always let the kink be - // in direction of the last - // variable return 1+8*(p(dim-1)>1./5. ? 1. : 0.); }; @@ -3761,8 +3510,6 @@ class PreliminaryEarthModel : public Function { inline virtual double value (const Point &p, const unsigned int) const { const double r=sqrt(p.square()); - // this data just ad hoc, not taken - // from the PREM return 10+2.5*(2-r/6371)*(2-r/6371)+20*(r<2000 ? 1 : 0); }; @@ -3777,9 +3524,6 @@ class PreliminaryEarthModel : public Function { virtual Tensor<1,dim> gradient (const Point &p, const unsigned int) const { - // gradient is derivative with - // respect to r times a unit vector - // in direction of p Tensor<1,dim> tmp(p); const double r=sqrt(p.square()); tmp *= 1./r * 2*(10-5*r/6371); @@ -3818,8 +3562,6 @@ class Distorted : public Function { virtual Tensor<1,dim> gradient (const Point &, const unsigned int) const { - // return zero, since we don't know - // how to do better (regularize?) return Tensor<1,dim>(); }; @@ -3842,7 +3584,6 @@ class BoundaryValues { virtual double value (const Point &p, const unsigned int) const { const double pi = 3.1415926536; -// if ((get_time()<0.4) && (p(0)==0)) if (p(0)==0) return sin(pi*get_time()/0.4)*sin(pi*get_time()/0.4); else @@ -3855,7 +3596,6 @@ class BoundaryValues { virtual double value (const Point &p, const unsigned int) const { const double pi = 3.1415926536; -// if ((get_time()<0.4) && (p(0)==0)) if (p(0)==0) return 2*pi/0.4*sin(pi*get_time()/0.4)*cos(pi*get_time()/0.4); else @@ -3920,13 +3660,8 @@ class WaveFromLeftBottom_u : public Function { const unsigned int) const { const double pi = 3.1415926536; const double r = sqrt(p.square()); - // let the radius of - // the excited site be - // 50 km const double a = 5000000; - // let the period be - // 60 seconds const double period = 60; if ((get_time()>=period) || (r>=a)) @@ -3943,12 +3678,7 @@ class WaveFromLeftBottom_u : public Function { const unsigned int) const { const double pi = 3.1415926536; const double r = sqrt(p.square()); - // let the radius of - // the excited site be - // 50 km const double a = 5000000; - // let the period be - // 60 seconds const double period = 60; if ((get_time()>=period) || (r>=a)) @@ -4047,8 +3777,6 @@ void WaveParameters::delete_parameters () delete coarse_grid; coarse_grid = 0; - // free memory used by the evaluation - // objects for (typename list*>::iterator i=eval_list.begin(); i!=eval_list.end(); ++i) delete *i; @@ -4296,14 +4024,11 @@ void WaveParameters<1>::make_coarse_grid (const string &name) { cells, SubCellData()); - // refine two of the three cells Triangulation::active_cell_iterator cell = coarse_grid->begin_active(); (++cell)->set_refine_flag (); (++cell)->set_refine_flag (); coarse_grid->execute_coarsening_and_refinement (); - // refine the level 1 cells - // twice more for (int k=0; k<2; ++k) { for (cell=coarse_grid->begin_active(); cell!=coarse_grid->end(); ++cell) @@ -4380,9 +4105,6 @@ void WaveParameters<2>::make_coarse_grid (const string &name) { for (unsigned int i=0; i<6; ++i) { boundary_info.boundary_lines.push_back (CellData<1>()); - // use Neumann boundary - // conditions at top - // and bottom of channel boundary_info.boundary_lines.back().material_id = 1; }; @@ -4402,8 +4124,6 @@ void WaveParameters<2>::make_coarse_grid (const string &name) { if (boundary_conditions == wave_from_left_bottom) { - // use Neumann bc at left - // (mirror condition) boundary_info.boundary_lines.push_back (CellData<1>()); boundary_info.boundary_lines.back().material_id = 1; boundary_info.boundary_lines[0].vertices[0] = 0; @@ -4493,13 +4213,11 @@ case square: case earth: { - // create ball GridGenerator::hyper_ball (*coarse_grid, Point(), 6371); if (boundary) delete boundary; - // set all boundary to Neumann type Triangulation::active_face_iterator face; for (face=coarse_grid->begin_active_face(); face != coarse_grid->end_face(); @@ -4509,8 +4227,6 @@ case square: const Point origin; boundary = new HyperBallBoundary(origin, 6371); - // set boundary. note that only - // id 1 is used coarse_grid->set_boundary (1, *boundary); coarse_grid->refine_global (initial_refinement); @@ -4601,13 +4317,11 @@ void WaveParameters<3>::make_coarse_grid (const string &name) { case earth: { - // create ball GridGenerator::hyper_ball (*coarse_grid, Point(), 6371); if (boundary) delete boundary; - // set all boundary to Neumann type Triangulation::active_face_iterator face; for (face=coarse_grid->begin_active_face(); face != coarse_grid->end_face(); @@ -4617,8 +4331,6 @@ void WaveParameters<3>::make_coarse_grid (const string &name) { const Point origin; boundary = new HyperBallBoundary(origin, 6371); - // set boundary. note that only - // id 1 is used coarse_grid->set_boundary (1, *boundary); coarse_grid->refine_global (initial_refinement); @@ -4744,9 +4456,6 @@ prm.declare_entry ("Refinement criterion", "energy estimator", template void WaveParameters::parse_parameters (ParameterHandler &prm) { - // declare some maps for convenience, - // to avoid those annoying if then else - // clauses... map boundary_conditions_list; boundary_conditions_list["wave from left"] = wave_from_left; boundary_conditions_list["fast wave from left"] = fast_wave_from_left; @@ -4768,10 +4477,6 @@ void WaveParameters::parse_parameters (ParameterHandler &prm) { prm.enter_subsection ("Grid"); initial_refinement = prm.get_integer ("Initial refinement"); - // don't make the grid here already, since - // it may depend on the chosen boundary - // conditions (which need some boundary - // flags to be set), etc. prm.enter_subsection ("Refinement"); { @@ -4861,15 +4566,12 @@ if (prm.get("Refinement criterion")=="energy estimator") number_of_sweeps = prm.get_integer ("Sweeps"); - // now that we know everything, we can make - // the grid prm.enter_subsection ("Grid"); make_coarse_grid (prm.get("Coarse mesh")); prm.leave_subsection (); }; -// explicit instantiations template class WaveParameters<2>; /* $Id$ */ @@ -4897,7 +4599,6 @@ SweepData::~SweepData () }; -// explicit instantiations template class SweepData<2>; /* $Id$ */ @@ -4966,7 +4667,6 @@ SweepInfo::Data::Data () : {}; -// explicit instantiations template void SweepInfo::write_summary (const list*> &eval_list, ostream &out) const; @@ -5116,12 +4816,8 @@ TimeStep_Wave::~TimeStep_Wave () template void TimeStep_Wave::wake_up (const unsigned int wakeup_level) { - // only do something if we are - // right at the beginning of a - // time level if (wakeup_level==0) { - // first make the dof handler Assert (dof_handler==0, ExcInternalError()); sweep_info->get_timers().grid_generation.start(); @@ -5147,13 +4843,6 @@ constraints.clear (); case primal_problem: case dual_problem: { - // assert that this function only - // wakes up data members in the right - // branch of the multiple inheritance - // lattice, i.e. the dual problem - // branch may only be woken up if the - // dual problem is solved and vica - // versa Assert (((next_action == primal_problem) && (static_cast*>(&get_timestep_primal()) == this)) @@ -5163,10 +4852,6 @@ constraints.clear (); == this)), ExcInternalError()); - // if we are to extrapolate the old - // solutions, we overwrite the previous - // content of the vectors anyway, so - // we can use the fast initialization u.reinit (dof_handler->n_dofs(), parameters.extrapolate_old_solutions && (timestep_no!=0)); v.reinit (dof_handler->n_dofs(), @@ -5177,7 +4862,6 @@ constraints.clear (); case postprocess: { sweep_info->get_timers().postprocessing.start(); - // reload data vectors from disk ifstream tmp_in(tmp_filename_base(branch_signature()).c_str()); u.block_read (tmp_in); v.block_read (tmp_in); @@ -5228,9 +4912,6 @@ void TimeStep_Wave::sleep (const unsigned int sleep_level) case 0: { - // these are the data we don't need - // any more right after the time step - // do this action for the derived classes constraints.clear (); system_sparsity.reinit (0,0,0); mass_matrix.reinit (system_sparsity); @@ -5261,12 +4942,10 @@ unsigned int TimeStep_Wave::solve (const UserMatrix &matrix, PrimitiveVectorMemory<> memory; SolverCG<> pcg(control,memory); - // solve pcg.template solve (matrix, solution, rhs, PreconditionUseMatrix (matrix, &UserMatrix::precondition)); - // distribute solution constraints.distribute (solution); return control.last_step(); @@ -5276,20 +4955,15 @@ unsigned int TimeStep_Wave::solve (const UserMatrix &matrix, template void TimeStep_Wave::create_matrices () { - // reinitialize sparsity and vector size system_sparsity.reinit (dof_handler->n_dofs(), dof_handler->n_dofs(), dof_handler->max_couplings_between_dofs()); - // build sparsity pattern and condense - // with hanging nodes DoFTools::make_sparsity_pattern (*dof_handler, system_sparsity); constraints.condense (system_sparsity); system_sparsity.compress (); - // reinit matrices laplace_matrix.reinit (system_sparsity); mass_matrix.reinit (system_sparsity); - // now actually assemble the matrices const unsigned int dofs_per_cell = fe.dofs_per_cell, n_q_points = quadrature.n_quadrature_points; @@ -5299,8 +4973,6 @@ void TimeStep_Wave::create_matrices () vector density_values (n_q_points, 1.); vector stiffness_values (n_q_points, 1.); - // if a coefficient is constant, get - // its value if (density_constant) fill_n (density_values.begin(), n_q_points, parameters.density->value(Point())); @@ -5317,8 +4989,6 @@ FEValues fe_values (fe, quadrature, update_q_points : 0))); - // indices of all the dofs on this - // cell vector dof_indices_on_cell (dofs_per_cell); FullMatrix cell_mass_matrix (dofs_per_cell, dofs_per_cell); FullMatrix cell_laplace_matrix (dofs_per_cell, dofs_per_cell); @@ -5336,9 +5006,6 @@ for (typename DoFHandler::active_cell_iterator cell=dof_handler->begin_acti const vector > > &shape_grads = fe_values.get_shape_grads (); const vector &JxW_values = fe_values.get_JxW_values (); - // if necessary: get the values of any - // of the coefficients at the quadrature - // points if (!density_constant || !stiffness_constant) { const vector > &quadrature_points = fe_values.get_quadrature_points (); @@ -5350,7 +5017,6 @@ for (typename DoFHandler::active_cell_iterator cell=dof_handler->begin_acti stiffness_values); }; - // now do the loop for (unsigned int q_point=0; q_point::active_cell_iterator cell=dof_handler->begin_acti stiffness_values[q_point]); }; - // now transfer to global matrices for (unsigned int i=0; i::transfer_old_solutions (const typename DoFHandler::cell { if (!old_cell->has_children() && !new_cell->has_children()) { - // none of the children are active, so - // recurse into the triangulation for (unsigned int c=0; c::children_per_cell; ++c) transfer_old_solutions (old_cell->child(c), new_cell->child(c), @@ -5450,10 +5113,7 @@ TimeStep_Wave::transfer_old_solutions (const typename DoFHandler::cell old_u, old_v); } else - // one of the cells is active { - // get values from - // old cell and set on the new one Vector cell_data (fe.dofs_per_cell); old_cell->get_interpolated_dof_values (old_grid_u, cell_data); @@ -5543,7 +5203,6 @@ void TimeStep_Wave::StatisticData::write (ostream &out) const }; -// explicit instantiations template class TimeStepBase_Wave<2>; template class TimeStep_Wave<2>; /* $Id$ */ @@ -5583,26 +5242,13 @@ void TimeStep_Dual::do_initial_step () { << tria->n_active_cells() << " cells, " << dof_handler->n_dofs() << " dofs"; - // add up sweep-accumulated data. count - // u and v as separate dofs - // - // do not add up cells, since this is already - // done in the primal problem sweep_info->get_data().dual_dofs += dof_handler->n_dofs() * 2; Vector tmp_u_bar, tmp_v_bar; - // get evaluation of dual functional - // at end time parameters.dual_functional->reset (*this); parameters.dual_functional-> compute_endtime_vectors (tmp_u_bar, tmp_v_bar); - // compute final values for the dual - // problem by projection, i.e. by - // inversion of the mass matrix; don't - // do so if the solution will be zero - // (inversion would not take long, but - // assembling the matrices is expensive) u.reinit (tmp_u_bar.size()); v.reinit (tmp_v_bar.size()); if ((tmp_u_bar.linfty_norm() > 0) || (tmp_v_bar.linfty_norm() > 0)) @@ -5640,25 +5286,13 @@ void TimeStep_Dual::do_timestep () << tria->n_active_cells() << " cells, " << dof_handler->n_dofs() << " dofs"; - // add up sweep-accumulated data. count - // u and v as separate dofs - // - // do not add up cells, since this is already - // done in the primal problem sweep_info->get_data().dual_dofs += dof_handler->n_dofs() * 2; const double time_step = get_forward_timestep (); - // Vectors holding the right hand sides of - // the two equations. Vector right_hand_side1 (dof_handler->n_dofs()); Vector right_hand_side2 (dof_handler->n_dofs()); - // Vector holding a the values for - // u and v of the previous time step. - // these are used in case we want to - // use extrapolation from the previous - // time step to the present one Vector old_u, old_v; if (parameters.extrapolate_old_solutions) { @@ -5679,26 +5313,12 @@ void TimeStep_Dual::do_timestep () constraints.condense (static_cast&>(system_matrix)); if (parameters.extrapolate_old_solutions) - // solve with a hopefully good guess - // as start vector { v = old_v; v.add (time_step, old_u); }; - // in the other case, the wake_up - // function of the base class has set - // the solution vector's values to - // zero already. - - -// in 1d, do not set boundary conditions - // at all - // - // note: in boundary_value_map, all entries - // for dirichlet boundary nodes are set to - // zero. we re-use them later, and because - // zero is such a universal constant, we - // don't even need to recompute the values! + + map boundary_value_list; if (dim != 1) { @@ -5722,26 +5342,12 @@ void TimeStep_Dual::do_timestep () right_hand_side2.add (-parameters.theta*time_step, tmp); }; constraints.condense (right_hand_side2); - /////////////////////////// - // This is not ok here, for two reasons: - // 1. it assumes that for v the same - // bc hold as for u; build the list - // of bc for v separately, this way - // it only holds for u=v=0 - // 2. v has no boundary conditions at - // all! - /////////////////////////// if (dim != 1) - // note: the values in boundary_value_map - // are already set for the first component - // and have not been touched since. MatrixTools::apply_boundary_values (boundary_value_list, system_matrix, u, right_hand_side2); if (parameters.extrapolate_old_solutions) - // solve with a hopefully good guess - // as start vector { u = v; u -= old_v; @@ -5799,15 +5405,10 @@ void TimeStep_Dual::wake_up (const unsigned int wakeup_level) template void TimeStep_Dual::assemble_vectors (Vector &right_hand_side1, Vector &right_hand_side2) { - // don't do some things for the initial - // step since we don't need them there Assert (next_timestep != 0, ExcInternalError()); - // construct right hand side build_rhs (right_hand_side1, right_hand_side2); - // compute contributions of error - // functional to right hand sides Vector dual1, dual2; parameters.dual_functional->reset (*this); parameters.dual_functional->compute_functionals (dual1, dual2); @@ -5818,7 +5419,6 @@ void TimeStep_Dual::assemble_vectors (Vector &right_hand_side1, right_hand_side2.add (timestep, dual1); - // condense right hand side in-place constraints.condense (right_hand_side1); }; @@ -5826,21 +5426,14 @@ void TimeStep_Dual::assemble_vectors (Vector &right_hand_side1, template void TimeStep_Dual::build_rhs (Vector &right_hand_side1, Vector &right_hand_side2) { - // select the TimeStep_Wave part in the - // TimeStep_Primal branch const TimeStep_Dual &previous_time_level = static_cast*>(next_timestep)->get_timestep_dual(); Assert (previous_time_level.tria->n_cells(0) == tria->n_cells(0), typename TimeStep_Wave::ExcCoarsestGridsDiffer()); - // convenience typedef typedef DoFHandler::cell_iterator cell_iterator; - // create this here and pass it to - // the cellwise function since it - // is expensive to create it for - // every cell FEValues fe_values (fe, quadrature, UpdateFlags(update_values | update_gradients | @@ -5867,11 +5460,8 @@ TimeStep_Dual::build_rhs (const DoFHandler::cell_iterator &old_cell, FEValues &fe_values, Vector &right_hand_side1, Vector &right_hand_side2) { - // declare this type for convenience typedef DoFHandler::cell_iterator cell_iterator; - // both cells have children, so - // recurse into the tree if (old_cell->has_children() && new_cell->has_children()) { for (unsigned int child=0; child::children_per_cell; ++child) @@ -5884,16 +5474,12 @@ TimeStep_Dual::build_rhs (const DoFHandler::cell_iterator &old_cell, }; -// select the TimeStep_Wave part in the - // TimeStep_Dual branch const TimeStep_Dual &previous_time_level = static_cast*>(next_timestep)->get_timestep_dual(); const unsigned int dofs_per_cell = fe.dofs_per_cell; const double time_step = get_forward_timestep(); - // both cells are on the same refinement - // level if (!old_cell->has_children() && !new_cell->has_children()) { fe_values.reinit (old_cell); @@ -5915,39 +5501,20 @@ TimeStep_Dual::build_rhs (const DoFHandler::cell_iterator &old_cell, density_values[point]; Vector tmp (dofs_per_cell); - // this is the right hand side of the - // first equation - // for the theta scheme: - // rhs1 := Mv^1 + kMu^1 - // -(1-theta)theta k^2 Av^1 Vector rhs1 (dofs_per_cell); - // this is the part of the right hand side - // of the second equation which depends - // on the solutions of the previous time - // step. - // for the theta scheme: - // rhs2 := Mu^1-(1-theta)kAv^1 Vector rhs2 (dofs_per_cell); - // vector of values of the function on the - // old grid restricted to one cell Vector old_dof_values_v (dofs_per_cell); - // vector of old u and v times the local - // mass matrix Vector local_M_u (dofs_per_cell); Vector local_M_v (dofs_per_cell); Vector local_A_v (dofs_per_cell); - // transfer v+k*u. Note that we need - // old_dof_values_u again below old_cell->get_dof_values (previous_time_level.v, old_dof_values_v); cell_matrix.vmult (local_M_v, old_dof_values_v); old_cell->get_dof_values (previous_time_level.u, tmp); cell_matrix.vmult (local_M_u, tmp); - // now for the part with the laplace - // matrix cell_matrix.clear (); vector stiffness_values(fe_values.n_quadrature_points); parameters.stiffness->value_list (fe_values.get_quadrature_points(), @@ -5972,8 +5539,6 @@ TimeStep_Dual::build_rhs (const DoFHandler::cell_iterator &old_cell, time_step, local_A_v); - // transfer into the global - // right hand side vector new_dof_indices (dofs_per_cell, DoFHandler::invalid_dof_index); new_cell->get_dof_indices (new_dof_indices); for (unsigned int i=0; i::build_rhs (const DoFHandler::cell_iterator &old_cell, return; }; - // only old cell is refined if (old_cell->has_children() && !new_cell->has_children()) { - // this is the right hand side of the - // first equation - // for the theta scheme: - // rhs1 := Mv^0 + kMu^1 - // -(1-theta)theta k^2 Av^1 Vector rhs1 (dofs_per_cell); - // this is the part of the right hand side - // of the second equation which depends - // on the solutions of the previous time - // step. - // for the theta scheme: - // rhs2 := Mu^1-(1-theta)kAv^1 Vector rhs2 (dofs_per_cell); - // collect the contributions of the - // child cells (and possibly their - // children as well) collect_from_children (old_cell, fe_values, rhs1, rhs2); - // transfer into the global - // right hand side vector new_dof_indices (dofs_per_cell); new_cell->get_dof_indices (new_dof_indices); for (unsigned int i=0; i::build_rhs (const DoFHandler::cell_iterator &old_cell, return; }; - // only new cell is refined if (!old_cell->has_children() && new_cell->has_children()) { - // vector of values of the function - // on the old grid restricted to - // the large (old) cell Vector old_dof_values_u (dofs_per_cell); Vector old_dof_values_v (dofs_per_cell); old_cell->get_dof_values (previous_time_level.u, old_dof_values_u); old_cell->get_dof_values (previous_time_level.v, old_dof_values_v); - // distribute the contribution of the - // large old cell to the children on - // the new cell distribute_to_children (new_cell, fe_values, old_dof_values_u, old_dof_values_v, right_hand_side1, right_hand_side2); @@ -6051,14 +5592,8 @@ TimeStep_Dual::collect_from_children (const DoFHandler::cell_iterator FEValues &fe_values, Vector &rhs1, Vector &rhs2) const { - // maximal difference of levels between the - // cell to which we write and the cells from - // which we read. Default is one, but this is - // increased with each level of recursion unsigned int level_difference = 1; - // select the TimeStep_Wave part in the - // TimeStep_Primal branch const TimeStep_Dual &previous_time_level = static_cast*>(next_timestep)->get_timestep_dual(); @@ -6067,30 +5602,14 @@ TimeStep_Dual::collect_from_children (const DoFHandler::cell_iterator FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - // these will hold the values of the - // solution on the old grid, i.e. on - // the small cells Vector local_old_dof_values_u (dofs_per_cell); Vector local_old_dof_values_v (dofs_per_cell); - // same for the contributions to the - // right hand sides of the projection Vector local_M_u (dofs_per_cell); Vector local_M_v (dofs_per_cell); Vector local_A_v (dofs_per_cell); - // this is the right hand side of the - // first equation - // for the theta scheme: - // rhs1 := Mv^0 + kMu^1 - // -(1-theta)theta k^2 Av^1 Vector child_rhs1 (dofs_per_cell); - // this is the part of the right hand side - // of the second equation which depends - // on the solutions of the previous time - // step. - // for the theta scheme: - // rhs2 := Mu^1-(1-theta)kAv^1 Vector child_rhs2 (dofs_per_cell); for (unsigned int c=0; c::children_per_cell; ++c) @@ -6100,9 +5619,6 @@ TimeStep_Dual::collect_from_children (const DoFHandler::cell_iterator child_rhs1.clear (); child_rhs2.clear (); - // if this child is further subdivided: - // collect the contributions of the - // children if (old_child->has_children()) { const unsigned int l = collect_from_children (old_child, fe_values, @@ -6116,12 +5632,9 @@ TimeStep_Dual::collect_from_children (const DoFHandler::cell_iterator const vector > >&gradients = fe_values.get_shape_grads (); const vector &weights = fe_values.get_JxW_values (); - // get solutions restricted to small - // cell old_child->get_dof_values (previous_time_level.u, local_old_dof_values_u); old_child->get_dof_values (previous_time_level.v, local_old_dof_values_v); - // compute M*(v+ku) on the small cell cell_matrix.clear (); vector density_values(fe_values.n_quadrature_points); parameters.density->value_list (fe_values.get_quadrature_points(), @@ -6137,8 +5650,6 @@ TimeStep_Dual::collect_from_children (const DoFHandler::cell_iterator cell_matrix.vmult (local_M_u, local_old_dof_values_u); cell_matrix.vmult (local_M_v, local_old_dof_values_v); - // now for the part with the laplace - // matrix cell_matrix.clear (); vector stiffness_values(fe_values.n_quadrature_points); parameters.stiffness->value_list (fe_values.get_quadrature_points(), @@ -6164,9 +5675,6 @@ TimeStep_Dual::collect_from_children (const DoFHandler::cell_iterator local_A_v); }; - // transfer the contribution of this - // child cell to its parent cell - // (#true# means: add up) fe.prolongate(c).Tvmult (rhs1, child_rhs1, true); fe.prolongate(c).Tvmult (rhs2, child_rhs2, true); }; @@ -6183,64 +5691,36 @@ TimeStep_Dual::distribute_to_children (const DoFHandler::cell_iterator const Vector &old_dof_values_v, Vector &right_hand_side1, Vector &right_hand_side2) { - // maximal difference of levels between the - // cell to which we write and the cells from - // which we read. Default is one, but this is - // increased with each level of recursion unsigned int level_difference = 1; const unsigned int dofs_per_cell = fe.dofs_per_cell; const double time_step = get_forward_timestep(); FullMatrix cell_matrix(dofs_per_cell, dofs_per_cell); - // set up a vector which will hold the - // restriction of the old - // functions (u,v) to a childcell Vector local_old_dof_values_u (dofs_per_cell); Vector local_old_dof_values_v (dofs_per_cell); - // vector of old u and v times the local - // mass matrix (on the small cells - // respectively) Vector local_M_u (dofs_per_cell); Vector local_M_v (dofs_per_cell); Vector local_A_v (dofs_per_cell); - // this is the right hand side of the - // first equation - // for the theta scheme: - // rhs1 := Mv^1 + kMu^1 - // -(1-theta)theta k^2 Av^1 Vector rhs1 (dofs_per_cell); - // this is the part of the right hand side - // of the second equation which depends - // on the solutions of the previous time - // step. - // for the theta scheme: - // rhs2 := Mu^1-(1-theta)kAv^1 Vector rhs2 (dofs_per_cell); - // indices of the dofs of a cell on - // the new grid vector new_dof_indices (dofs_per_cell, DoFHandler::invalid_dof_index); -// loop over the child cells for (unsigned int c=0; c::children_per_cell; ++c) { const DoFHandler::cell_iterator new_child = new_cell->child(c); - // get u and v on the childcells fe.prolongate(c).vmult (local_old_dof_values_u, old_dof_values_u); fe.prolongate(c).vmult (local_old_dof_values_v, old_dof_values_v); if (new_child->has_children()) - // cell on new grid is further refined - // distribute data on this local cell - // to its children { const unsigned int l = distribute_to_children (new_child, fe_values, local_old_dof_values_u, @@ -6250,15 +5730,12 @@ TimeStep_Dual::distribute_to_children (const DoFHandler::cell_iterator level_difference = max (l+1, level_difference); } else - // child is not further refined - // -> directly distribute data { fe_values.reinit (new_child); const FullMatrix &values = fe_values.get_shape_values(); const vector > >&gradients = fe_values.get_shape_grads (); const vector &weights = fe_values.get_JxW_values (); - // transfer v+ku cell_matrix.clear (); vector density_values(fe_values.n_quadrature_points); parameters.density->value_list (fe_values.get_quadrature_points(), @@ -6274,8 +5751,6 @@ TimeStep_Dual::distribute_to_children (const DoFHandler::cell_iterator cell_matrix.vmult (local_M_u, local_old_dof_values_u); cell_matrix.vmult (local_M_v, local_old_dof_values_v); - // now for the part with the laplace - // matrix cell_matrix.clear (); vector stiffness_values(fe_values.n_quadrature_points); parameters.stiffness->value_list (fe_values.get_quadrature_points(), @@ -6300,8 +5775,6 @@ TimeStep_Dual::distribute_to_children (const DoFHandler::cell_iterator time_step, local_A_v); - // transfer into the global - // right hand side new_child->get_dof_indices (new_dof_indices); for (unsigned int i=0; i::distribute_to_children (const DoFHandler::cell_iterator }; -// explicit instantiations template class TimeStep_Dual<2>; /* $Id$ */ @@ -6357,9 +5829,6 @@ void TimeStep_ErrorEstimation::estimate_error () else { - // can't estimate error - // this way for the initial - // time level if (timestep_no != 0) estimate_error_dual (); }; @@ -6449,11 +5918,6 @@ void TimeStep_ErrorEstimation::estimate_error_energy (const unsigned int wh vector(), parameters.stiffness); - // if we are at the first time step, we - // try to adapt the mesh to the variable - // v also, since in some cases only v.neq.0 - // and then the error indicator results in - // zero on all cells if (((previous_timestep == 0) && (which_variables==0)) || ((next_timestep == 0) && (which_variables==1) )) { @@ -6484,8 +5948,6 @@ void TimeStep_ErrorEstimation::estimate_error_dual () { (previous_timestep)->get_timestep_dual(); -// first clear the user pointers of - // the cells we need if (true) { DoFHandler::active_cell_iterator @@ -6496,12 +5958,8 @@ void TimeStep_ErrorEstimation::estimate_error_dual () { cell->clear_user_pointer(); }; - // set up some matrices used by the - // functions called in the sequel make_interpolation_matrices (); - // then go recursively through the two - // grids and collect the data if (true) { FEValues fe_values (dual_problem.fe, @@ -6512,28 +5970,14 @@ void TimeStep_ErrorEstimation::estimate_error_dual () { update_JxW_values | update_q_points)); - // get dof iterators for the primal - // and dual dof handlers for the - // present and the last time level. - // since the coarse grids are the - // same and since we only loop - // over coarse grid cells here, - // the cells over which we loop - // match each other DoFHandler::cell_iterator primal_cell = primal_problem.dof_handler->begin(), dual_cell = dual_problem.dof_handler->begin(), primal_cell_old = primal_problem_old.dof_handler->begin(), dual_cell_old = dual_problem_old.dof_handler->begin(); - // get last cell to loop over. note that - // we only loop over the coarsest mesh - // in this function const DoFHandler::cell_iterator endc = primal_problem.dof_handler->end(0); - // loop over all corse grid cells, since - // they are the same on the two time - // levels for (; primal_cell!=endc; (++primal_cell, ++dual_cell, ++primal_cell_old, ++dual_cell_old)) estimate_error_dual (primal_cell, dual_cell, @@ -6545,13 +5989,9 @@ void TimeStep_ErrorEstimation::estimate_error_dual () { ::ExcInternalError()); }; - // compute the sum of the errors - // on the cells ErrorOnCell total_estimated_error; -// now fill the data we collected to the - // error_per_cell array Vector::iterator i = estimated_error_per_cell.begin(); DoFHandler::active_cell_iterator cell = primal_problem.dof_handler->begin_active(); @@ -6580,8 +6020,6 @@ TimeStep_ErrorEstimation::estimate_error_dual (const DoFHandler::cell_ CellwiseError &cellwise_error, FEValues &fe_values) const { - // if both of the two cells have children: - // recurse into the grid if (primal_cell->has_children() && primal_cell_old->has_children()) { for (unsigned int child=0; child::children_per_cell; ++child) @@ -6609,26 +6047,16 @@ const TimeStep_Primal &primal_problem = get_timestep_primal(), dofs_per_cell_dual = dual_fe.dofs_per_cell; -// none of the two cells has children if (!primal_cell->has_children() && !primal_cell_old->has_children()) { - // vector holding the solutions on - // this time level. u and v will - // hold the solution interpolated - // up to the ansatz degree of the - // dual problem. Vector local_u(dofs_per_cell_dual), local_v(dofs_per_cell_dual); Vector local_u_bar(dofs_per_cell_dual), local_v_bar(dofs_per_cell_dual); - // same thing for old solutions Vector local_u_old(dofs_per_cell_dual), local_v_old(dofs_per_cell_dual); Vector local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual); - // vectors to hold dof values on - // the primal/dual cell (temporary) Vector primal_tmp(dofs_per_cell_primal); - // fill local solution vectors primal_cell->get_dof_values (primal_problem.u, primal_tmp); embedding_matrix.vmult (local_u, primal_tmp); @@ -6639,9 +6067,6 @@ const TimeStep_Primal &primal_problem = get_timestep_primal(), dual_cell->get_dof_values (dual_problem.v, local_v_bar); -// fill local old solution vectors. - // no problems here, since the two - // cells are both unrefined primal_cell_old->get_dof_values (primal_problem_old.u, primal_tmp); embedding_matrix.vmult (local_u_old, primal_tmp); @@ -6651,7 +6076,6 @@ const TimeStep_Primal &primal_problem = get_timestep_primal(), dual_cell_old->get_dof_values (dual_problem_old.u, local_u_bar_old); dual_cell_old->get_dof_values (dual_problem_old.v, local_v_bar_old); - // store the error on this cell primal_cell->set_user_pointer (cellwise_error.next_free_slot); *cellwise_error.next_free_slot = error_formula (dual_cell, local_u, local_v, @@ -6665,22 +6089,13 @@ const TimeStep_Primal &primal_problem = get_timestep_primal(), }; -// only new cell has children. handle this - // case by prolonging the solutions on the - // old cell to its children and recursing - // thereon if (!primal_cell_old->has_children() && primal_cell->has_children()) { Vector local_u_old(dofs_per_cell_dual), local_v_old(dofs_per_cell_dual); Vector local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual); - // vectors to hold dof values on - // the primal/dual cell (temporary) Vector primal_tmp(dofs_per_cell_primal); - // fill local old solution vectors. - // no problems here, since the two - // cells are both unrefined primal_cell_old->get_dof_values (primal_problem_old.u, primal_tmp); embedding_matrix.vmult (local_u_old, primal_tmp); @@ -6703,73 +6118,30 @@ compute_error_on_new_children (primal_cell, dual_cell, }; -// last possibility: new cell is not - // refined, but old one is. in this case: - // collect error on this cell from the - // smaller ones on the old grid - // - // note that we have to perform the - // interpolation of the dual solution - // on the large cell of the new grid - // and have to pass the interpolant - // down to the children (which are - // taken from the old grid) if (primal_cell_old->has_children() && !primal_cell->has_children()) { - // vector holding the solutions on - // this time level. u and v will - // hold the solution interpolated - // up to the ansatz degree of the - // dual problem. Vector local_u(dofs_per_cell_dual), local_v(dofs_per_cell_dual); Vector local_u_bar(dofs_per_cell_dual), local_v_bar(dofs_per_cell_dual); Vector local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual); Vector local_Ih_u_bar(dofs_per_cell_dual), local_Ih_v_bar(dofs_per_cell_dual); Vector local_Ih_u_bar_old(dofs_per_cell_dual), local_Ih_v_bar_old(dofs_per_cell_dual); - // vectors to hold dof values on - // the primal/dual cell (temporary) Vector primal_tmp(embedding_matrix.n()); - // fill local solution vectors primal_cell->get_dof_values (primal_problem.u, primal_tmp); embedding_matrix.vmult (local_u, primal_tmp); primal_cell->get_dof_values (primal_problem.v, primal_tmp); embedding_matrix.vmult (local_v, primal_tmp); - // get the dual solution on the new - // time level to allow its interpolation dual_cell->get_dof_values (dual_problem.u, local_u_bar); dual_cell->get_dof_values (dual_problem.v, local_v_bar); - // now we have to get the interpolant - // of the dual solution on the old - // time level. Originally I wanted - // to do the following - // dual_cell_old->get_dof_values - // (previous_time_level->u_bar, - // local_u_bar_old - // ); - // dual_cell_old->get_dof_values - // (previous_time_level->v_bar, - // local_v_bar_old - // ); - // - // However, this must fail since - // dual_cell_old has children and - // we can't access data values on - // nonterminal cells... - // - // therefore, we use a new function - // which does exactly this interpolation dual_cell_old->get_interpolated_dof_values (dual_problem_old.u, local_u_bar_old); dual_cell_old->get_interpolated_dof_values (dual_problem_old.v, local_v_bar_old); - // compute the interpolant of w_bar and - // w_bar_old on the large cell interpolation_matrix.vmult (local_Ih_u_bar, local_u_bar); interpolation_matrix.vmult (local_Ih_v_bar, local_v_bar); interpolation_matrix.vmult (local_Ih_u_bar_old, local_u_bar_old); @@ -6813,9 +6185,6 @@ compute_error_on_new_children (const DoFHandler::cell_iterator &primal_cell for (unsigned int child=0; child::children_per_cell; ++child) { - // we have the solutions on the - // old (large) cell, we restrict it to - // each of the small cells Vector child_u_old(dofs_per_cell_dual), child_v_old(dofs_per_cell_dual); Vector child_u_bar_old(dofs_per_cell_dual), child_v_bar_old(dofs_per_cell_dual); @@ -6829,9 +6198,6 @@ for (unsigned int child=0; child::children_per_cell; ++child) new_dual_child = dual_cell->child(child); if (new_primal_child->has_children()) - // cell on new grid is further refined - // distribute data on this local cell - // to its children compute_error_on_new_children (new_primal_child, new_dual_child, child_u_old, child_v_old, @@ -6840,24 +6206,12 @@ for (unsigned int child=0; child::children_per_cell; ++child) cellwise_error, fe_values); else - // we have reached the final level - // -> gather the information from - // the new cell and compute the - // error { - // vector holding the solutions on - // this time level. u and v will - // hold the solution interpolated - // up to the ansatz degree of the - // dual problem. Vector local_u(dofs_per_cell_dual), local_v(dofs_per_cell_dual); Vector local_u_bar(dofs_per_cell_dual), local_v_bar(dofs_per_cell_dual); - // vectors to hold dof values on - // the primal/dual cell (temporary) Vector primal_tmp(embedding_matrix.n()); - // fill local solution vectors new_primal_child->get_dof_values (primal_problem.u, primal_tmp); embedding_matrix.vmult (local_u, primal_tmp); @@ -6906,9 +6260,6 @@ TimeStep_ErrorEstimation::collect_error_from_children (const DoFHandler::children_per_cell; ++child) { - // we have the solutions on the - // new (large) cell, we restrict it to - // each of the small cells Vector child_u(dofs_per_cell_dual), child_v(dofs_per_cell_dual); Vector child_u_bar(dofs_per_cell_dual), child_v_bar(dofs_per_cell_dual); Vector child_Ih_u_bar(dofs_per_cell_dual), child_Ih_v_bar(dofs_per_cell_dual); @@ -6928,8 +6279,6 @@ TimeStep_ErrorEstimation::collect_error_from_children (const DoFHandlerchild(child); if (old_primal_child->has_children()) - // the old cell was further - // refined -> recurse into the tree error_sum += collect_error_from_children (old_primal_child, old_dual_child, child_u, child_v, @@ -6938,19 +6287,12 @@ TimeStep_ErrorEstimation::collect_error_from_children (const DoFHandler go on here directly { Vector local_u_old(dofs_per_cell_dual), local_v_old(dofs_per_cell_dual); Vector local_u_bar_old(dofs_per_cell_dual), local_v_bar_old(dofs_per_cell_dual); - // vectors to hold dof values on - // the primal/dual cell (temporary) Vector primal_tmp(embedding_matrix.n()); - // fill local old solution vectors. - // no problems here, since the two - // cells are both unrefined old_primal_child->get_dof_values (primal_problem_old.u, primal_tmp); embedding_matrix.vmult (local_u_old, primal_tmp); @@ -7038,15 +6380,10 @@ TimeStep_ErrorEstimation::error_formula (const DoFHandler::active_cell const Vector &local_difference_v_bar_old, FEValues &fe_values) const { - // this will be used to sum up the - // different parts of the error - // identity on this cell ErrorOnCell error_on_cell; const unsigned int dofs_per_cell = get_timestep_dual().fe.dofs_per_cell; - // two temporaries needed for the - // calculation of the scalar products Vector tmp1(dofs_per_cell); Vector tmp2(dofs_per_cell); @@ -7058,15 +6395,9 @@ vector stiffness(fe_values.n_quadrature_points); parameters.stiffness->gradient_list (fe_values.get_quadrature_points(), grad_stiffness); - // matrix for (phi_i, phi_j) FullMatrix mass_matrix (tmp1.size(), tmp1.size()); - // matrix for (a\Delta phi_i, phi_j) -// FullMatrix delta_matrix (tmp1.size(), tmp1.size()); - // matrix for (grad a . grad phi_i, phi_j) -// FullMatrix grad_grad_matrix (tmp1.size(), tmp1.size()); FullMatrix laplace_matrix (tmp1.size(), tmp1.size()); - // first task: create matrices fe_values.reinit (cell); const FullMatrix &values = fe_values.get_shape_values(); const vector > >&gradients = fe_values.get_shape_grads (); @@ -7086,22 +6417,11 @@ vector stiffness(fe_values.n_quadrature_points); weights[point] * density_values[point]; - // compute laplacian of phi_i - // by summing the trace of the - // tensor of second derivatives double laplace_phi_i = 0; for (unsigned int t=0; t stiffness(fe_values.n_quadrature_points); }; -// //////////////////////////////////// - // Compute the different contributions - // separately. Note that the parts - // 1 and 2a+2b together should give - // a small quantity, since they form - // the first domain residual, which is - // small for elements of odd order. -// //////////////////////////////////// - // PART 1 - // - // let #tmp_dual2# hold the contribution - // 1/2 (1-I)(u_bar^n + u_bar^(n-1)) - // with I the interpolation operator tmp2 = local_difference_u_bar; tmp2 += local_difference_u_bar_old; tmp2.scale (1./2.); - // let #tmp_dual1# hold - // u^n - u^(n-1) tmp1 = local_u; tmp1 -= local_u_old; error_on_cell.part[0] = mass_matrix.matrix_scalar_product (tmp1, tmp2); -// same thing for the second part - // with v instead of u tmp2 = local_difference_v_bar; tmp2 += local_difference_v_bar_old; tmp2.scale (1./2.); @@ -7149,11 +6452,6 @@ vector stiffness(fe_values.n_quadrature_points); error_on_cell.part[1] = mass_matrix.matrix_scalar_product (tmp1, tmp2); -// //////////////////////////////// - // PART 2a - // - // let tmp2=(1-I)(u_bar^n+u_bar^(n-1)) - // let tmp1 = v^n+v^(n-1) tmp2 = local_difference_u_bar; tmp2 += local_difference_u_bar_old; @@ -7164,11 +6462,6 @@ vector stiffness(fe_values.n_quadrature_points); mass_matrix.matrix_scalar_product (tmp1, tmp2)); -// //////////////////////////////// - // PART 2b - // - // let tmp1 = v^n-v^(n-1) - // let tmp2=u_bar^n - u_bar^(n-1) tmp1 = local_v; tmp1 -= local_v_old; @@ -7179,11 +6472,6 @@ vector stiffness(fe_values.n_quadrature_points); mass_matrix.matrix_scalar_product (tmp1, tmp2)); -// //////////////////////////////// - // PART 3a - // - // let tmp2=(1-I)(v_bar^n+v_bar^(n-1)) - // let tmp1 = u^n+u^(n-1) tmp2 = local_difference_v_bar; tmp2 += local_difference_v_bar_old; @@ -7194,11 +6482,6 @@ vector stiffness(fe_values.n_quadrature_points); laplace_matrix.matrix_scalar_product (tmp1, tmp2)); -// //////////////////////////////// - // PART 3b - // - // let tmp1 = u^n-u^(n-1) - // let tmp2 = (v_bar^n - v_bar^(n-1)) tmp1 = local_u; tmp1 -= local_u_old; @@ -7209,93 +6492,29 @@ vector stiffness(fe_values.n_quadrature_points); laplace_matrix.matrix_scalar_product (tmp1, tmp2)); -// // /////////////////////////// -// // PART 0: -// // tmp1 = u^n-u^(n-1) -// // tmp2 = 1/2 (1-I) (u_bar^n + u_bar^(n-1) -// tmp1 = local_u; -// tmp1 -= local_u_old; -// tmp2 = local_difference_u_bar; -// tmp2 += local_difference_u_bar_old; -// tmp2.scale (1./2.); -// error_on_cell.part[0] = -1. * mass_matrix.matrix_scalar_product (tmp1, tmp2); -// // //////////////////////////// -// // PART 1: -// // same as above, but with u and -// // v interchanged -// tmp1 = local_v; -// tmp1 -= local_v_old; -// tmp2 = local_difference_v_bar; -// tmp2 += local_difference_v_bar_old; -// tmp2.scale (1./2.); -// error_on_cell.part[1] = -1. * mass_matrix.matrix_scalar_product (tmp1, tmp2); -// // ///////////////////////////// -// // PART 2: -// // tmp1 = v^n+v^(n-1) -// // tmp2 = (1-I) (u_bar^n + u_bar^(n-1)) -// tmp1 = local_v; -// tmp1 += local_v_old; -// tmp2 = local_difference_u_bar; -// tmp2 += local_difference_u_bar_old; -// error_on_cell.part[2] = mass_matrix.matrix_scalar_product (tmp1, tmp2); -// error_on_cell.part[2] *= get_backward_timestep() / 4; -// // ////////////////////////////// -// // PART 3: -// // tmp1 = v^n-v^(n-1) -// // tmp2 = u_bar^n - u_bar^(n-1) -// tmp1 = local_v; -// tmp1 -= local_v_old; -// tmp2 = local_u_bar; -// tmp2 -= local_u_bar_old; -// error_on_cell.part[3] = mass_matrix.matrix_scalar_product (tmp1, tmp2); -// error_on_cell.part[3] *= get_backward_timestep() / 12; -// // ///////////////////////////// -// // PART 4 and 6: -// // tmp1 = u^n+u^(n-1) -// // tmp2 = (1-I) (v_bar^n + v_bar^(n-1)) -// tmp1 = local_u; -// tmp1 += local_u_old; -// tmp2 = local_difference_v_bar; -// tmp2 += local_difference_v_bar_old; -// error_on_cell.part[4] = delta_matrix.matrix_scalar_product (tmp1, tmp2); -// error_on_cell.part[4] *= get_backward_timestep() / 4; -// error_on_cell.part[6] = grad_grad_matrix.matrix_scalar_product (tmp1, tmp2); -// error_on_cell.part[6] *= get_backward_timestep() / 12; -// // ////////////////////////////// -// // PART 5 and 7: -// // tmp1 = u^n-u^(n-1) -// // tmp2 = v_bar^n - v_bar^(n-1) -// tmp1 = local_u; -// tmp1 -= local_u_old; -// tmp2 = local_v_bar; -// tmp2 -= local_v_bar_old; -// error_on_cell.part[5] = delta_matrix.matrix_scalar_product (tmp1, tmp2); -// error_on_cell.part[5] *= get_backward_timestep() / 12; -// error_on_cell.part[7] = grad_grad_matrix.matrix_scalar_product (tmp1, tmp2); -// error_on_cell.part[7] *= get_backward_timestep() / 12; return error_on_cell; @@ -7318,17 +6537,6 @@ void TimeStep_ErrorEstimation::make_interpolation_matrices () { embedding_matrix(i,j) = primal_fe.shape_value (j, unit_support_points[i]); -// construct the difference between the - // identity and the interpolation operator - // to the primal ansatz space. The - // interpolation operator is to act from - // and to the dual space (not as above - // where it acted from one space into - // the other), so we construct it by - // first interpolating down to the - // primal space and then back to the - // dual space (by injection, using - // the matrix constructed above) FullMatrix inverse_interpolation (primal_fe.dofs_per_cell, dual_fe.dofs_per_cell); unit_support_points.resize (primal_fe.dofs_per_cell); @@ -7342,10 +6550,8 @@ void TimeStep_ErrorEstimation::make_interpolation_matrices () { embedding_matrix.mmult (interpolation_matrix, inverse_interpolation); difference_matrix.reinit (dual_fe.dofs_per_cell, dual_fe.dofs_per_cell); - // initialize with the unit matrix for (unsigned int i=0; i::CellwiseError::CellwiseError (const unsigned int {}; -// explicit instantiations template class TimeStep_ErrorEstimation<2>; /* $Id$ */ @@ -7460,8 +6665,6 @@ void TimeStep::wake_up (const unsigned int wakeup_level) break; case grid_refinement: - // do nothing except for waking - // up the grid break; default: @@ -7495,9 +6698,6 @@ void TimeStep::sleep (const unsigned int sleep_level) break; case grid_refinement: - // save the flags since the grid - // will be deleted next along with - // the flags if (sleep_level == 1) save_refine_flags (); break; @@ -7557,7 +6757,6 @@ void TimeStep::write_statistics (ostream &out) const }; -// explicit instantiations template class TimeStep<2>; /* $Id$ */ @@ -7589,12 +6788,8 @@ void TimeStep_Postprocess::postprocess_timestep () (parameters.refinement_strategy == WaveParameters::dual_estimator)) estimate_error (); - // the error estimator has its own timer, - // so start the postprocessing timer - // only here sweep_info->get_timers().postprocessing.start(); - // do the user evaluations statistic_data.evaluation_results.clear(); for (typename list*>::const_iterator i = parameters.eval_list.begin(); i != parameters.eval_list.end(); ++i) @@ -7603,7 +6798,6 @@ void TimeStep_Postprocess::postprocess_timestep () statistic_data.evaluation_results.push_back ((*i)->evaluate()); }; - // write data if requested if (((parameters.write_solution_strategy == WaveParameters::all_sweeps) || ((parameters.write_solution_strategy == WaveParameters::last_sweep_only) && (sweep_no == parameters.number_of_sweeps-1))) @@ -7625,11 +6819,8 @@ void TimeStep_Postprocess::postprocess_timestep () out.add_data_vector (get_timestep_primal().u, "u"); out.add_data_vector (get_timestep_primal().v, "v"); - // vectors holding the dual variables, - // if needed Vector u_bar, v_bar; - // if dual problem was computed if ((parameters.refinement_strategy == WaveParameters::dual_estimator) && (sweep_no >= parameters.initial_energy_estimator_sweeps)) @@ -7638,26 +6829,17 @@ void TimeStep_Postprocess::postprocess_timestep () v_bar.reinit (get_timestep_primal().u.size()); if (parameters.primal_fe == parameters.dual_fe) - // if primal and dual solution - // were computed using the same - // ansatz, we may add the dual - // solutions "as is" { u_bar = get_timestep_dual().u; v_bar = get_timestep_dual().v; } else - // otherwise: first interpolate - // the dual solutions to the - // same degree interpolate_dual_solution (u_bar, v_bar); out.add_data_vector (u_bar, "dual_u"); out.add_data_vector (v_bar, "dual_v"); }; - // add error vector if error - // was computed Vector estimated_error; if ((sweep_no::dual_estimator)) @@ -7701,24 +6883,16 @@ void TimeStep_Postprocess::postprocess_timestep () sweep_data->data_out_stack->add_data_vector (get_timestep_primal().u, "u"); sweep_data->data_out_stack->add_data_vector (get_timestep_primal().v, "v"); - // if dual problem was computed if ((parameters.refinement_strategy == WaveParameters::dual_estimator) && (sweep_no >= parameters.initial_energy_estimator_sweeps)) { if (parameters.primal_fe == parameters.dual_fe) - // if primal and dual solution - // were computed using the same - // ansatz, we may add the dual - // solutions "as is" { sweep_data->data_out_stack->add_data_vector (get_timestep_dual().u, "dual_u"); sweep_data->data_out_stack->add_data_vector (get_timestep_dual().v, "dual_v"); } else - // otherwise: first interpolate - // the dual solutions to the - // same degree { Vector u_bar(get_timestep_primal().dof_handler->n_dofs()); Vector v_bar(get_timestep_primal().dof_handler->n_dofs()); @@ -7730,8 +6904,6 @@ void TimeStep_Postprocess::postprocess_timestep () }; }; - // add error estimator if that was - // computed if ((sweep_no < parameters.number_of_sweeps-1) || (parameters.refinement_strategy == WaveParameters::dual_estimator)) sweep_data->data_out_stack->add_data_vector (estimated_error_per_cell, "est_error"); @@ -7790,11 +6962,6 @@ void TimeStep_Postprocess::interpolate_dual_solution (Vector &inter endc = get_timestep_primal().dof_handler->end(); dual_cell = target.dof_handler->begin_active(); - // loop over all cells and set the vertex - // values of the interpolated vector to - // the vertex values of the dual solutions. - // don't care that we set these values - // more than once... for (; primal_cell != endc; ++primal_cell, ++dual_cell) for (unsigned int vertex=0; vertex::vertices_per_cell; ++vertex) { @@ -7825,7 +6992,6 @@ void TimeStep_Postprocess::StatisticData::write (ostream &out) const }; -// explicit instantiations template class TimeStep_Postprocess<2>; /* $Id$ */ @@ -7866,12 +7032,9 @@ void TimeStep_Primal::do_initial_step () << dof_handler->n_dofs() << " dofs"; -// add up sweep-accumulated data. count - // u and v as separate dofs sweep_info->get_data().cells += tria->n_active_cells(); sweep_info->get_data().primal_dofs += dof_handler->n_dofs() * 2; - // use L2-projection for u0 and v0 #if 2 == 1 VectorTools::interpolate (*dof_handler, *parameters.initial_u, u); VectorTools::interpolate (*dof_handler, *parameters.initial_v, v); @@ -7883,9 +7046,6 @@ void TimeStep_Primal::do_initial_step () quadrature, *parameters.initial_v, v, false, quadrature_face, (dim==2 ? true : false)); #endif - // set energy to zero since we - // don't want to assemble the matrices - // needed for this statistic_data = typename TimeStep_Wave::StatisticData (tria->n_active_cells(), dof_handler->n_dofs(), 0, @@ -7907,24 +7067,15 @@ void TimeStep_Primal::do_timestep () << tria->n_active_cells() << " cells, " << dof_handler->n_dofs() << " dofs"; - // add up sweep-accumulated data. count - // u and v as separate dofs sweep_info->get_data().cells += tria->n_active_cells(); sweep_info->get_data().primal_dofs += dof_handler->n_dofs() * 2; const double time_step = get_backward_timestep (); - // Vectors holding the right hand sides of - // the two equations. Vector right_hand_side1 (dof_handler->n_dofs()); Vector right_hand_side2 (dof_handler->n_dofs()); - // Vector holding a the values for - // u and v of the previous time step. - // these are used in case we want to - // use extrapolation from the previous - // time step to the present one Vector old_u, old_v; if (parameters.extrapolate_old_solutions) { @@ -7946,21 +7097,13 @@ assemble_vectors (right_hand_side1, right_hand_side2); constraints.condense (static_cast&>(system_matrix)); if (parameters.extrapolate_old_solutions) - // solve with a hopefully good guess - // as start vector { u = old_u; u.add (time_step, old_v); }; - // in 1d, do not set boundary conditions - // at all if (dim!=1) { - // in the other case, the wake_up - // function of the base class has set - // the solution vector's values to - // zero already. parameters.boundary_values_u->set_time (time); parameters.boundary_values_v->set_time (time); @@ -7986,8 +7129,6 @@ assemble_vectors (right_hand_side1, right_hand_side2); constraints.condense (right_hand_side2); -// in 1d, do not set boundary conditions - // at all if (dim != 1) { map boundary_value_list; @@ -8001,8 +7142,6 @@ assemble_vectors (right_hand_side1, right_hand_side2); if (parameters.extrapolate_old_solutions) - // solve with a hopefully good guess - // as start vector { v = u; v -= old_u; @@ -8060,13 +7199,9 @@ void TimeStep_Primal::wake_up (const unsigned int wakeup_level) template void TimeStep_Primal::assemble_vectors (Vector &right_hand_side1, Vector &right_hand_side2) { - // don't do some things for the initial - // step since we don't need them there Assert (timestep_no>=1, ExcInternalError()); - // construct right hand side build_rhs (right_hand_side1, right_hand_side2); - // condense right hand side in-place constraints.condense (right_hand_side1); }; @@ -8074,21 +7209,14 @@ void TimeStep_Primal::assemble_vectors (Vector &right_hand_side1, template void TimeStep_Primal::build_rhs (Vector &right_hand_side1, Vector &right_hand_side2) { - // select the TimeStep_Wave part in the - // TimeStep_Primal branch const TimeStep_Primal &previous_time_level = static_cast*>(previous_timestep)->get_timestep_primal(); Assert (previous_time_level.tria->n_cells(0) == tria->n_cells(0), typename TimeStep_Wave::ExcCoarsestGridsDiffer()); - // convenience typedef typedef DoFHandler::cell_iterator cell_iterator; - // create this here and pass it to - // the cellwise function since it - // is expensive to create it for - // every cell FEValues fe_values (fe, quadrature, UpdateFlags(update_values | update_gradients | @@ -8115,11 +7243,8 @@ TimeStep_Primal::build_rhs (const DoFHandler::cell_iterator &old_cell, FEValues &fe_values, Vector &right_hand_side1, Vector &right_hand_side2) { - // declare this type for convenience typedef DoFHandler::cell_iterator cell_iterator; - // both cells have children, so - // recurse into the tree if (old_cell->has_children() && new_cell->has_children()) { for (unsigned int child=0; child::children_per_cell; ++child) @@ -8132,16 +7257,12 @@ TimeStep_Primal::build_rhs (const DoFHandler::cell_iterator &old_cell, }; -// select the TimeStep_Wave part in the - // TimeStep_Primal branch const TimeStep_Primal &previous_time_level = static_cast*>(previous_timestep)->get_timestep_primal(); const unsigned int dofs_per_cell = fe.dofs_per_cell; const double time_step = get_backward_timestep(); - // both cells are on the same refinement - // level if (!old_cell->has_children() && !new_cell->has_children()) { fe_values.reinit (old_cell); @@ -8151,7 +7272,6 @@ TimeStep_Primal::build_rhs (const DoFHandler::cell_iterator &old_cell, const vector > >&gradients = fe_values.get_shape_grads (); const vector &weights = fe_values.get_JxW_values (); - // assemble mass matrix vector density_values(fe_values.n_quadrature_points); parameters.density->value_list (fe_values.get_quadrature_points(), density_values); @@ -8164,39 +7284,20 @@ TimeStep_Primal::build_rhs (const DoFHandler::cell_iterator &old_cell, density_values[point]; Vector tmp (dofs_per_cell); - // this is the right hand side of the - // first equation - // for the theta scheme: - // rhs1 := Mu^0 + kMv^0 - // -(1-theta)theta k^2 Au^0 Vector rhs1 (dofs_per_cell); - // this is the part of the right hand side - // of the second equation which depends - // on the solutions of the previous time - // step. - // for the theta scheme: - // rhs2 := Mv^0-(1-theta)kA^0 Vector rhs2 (dofs_per_cell); - // vector of values of the function on the - // old grid restricted to one cell Vector old_dof_values_u (dofs_per_cell); - // vector of old u and v times the local - // mass matrix Vector local_M_u (dofs_per_cell); Vector local_M_v (dofs_per_cell); Vector local_A_u (dofs_per_cell); - // transfer u+k*v. Note that we need - // old_dof_values_u again below old_cell->get_dof_values (previous_time_level.u, old_dof_values_u); cell_matrix.vmult (local_M_u, old_dof_values_u); old_cell->get_dof_values (previous_time_level.v, tmp); cell_matrix.vmult (local_M_v, tmp); - // now for the part with the laplace - // matrix cell_matrix.clear (); vector stiffness_values(fe_values.n_quadrature_points); parameters.stiffness->value_list (fe_values.get_quadrature_points(), @@ -8222,8 +7323,6 @@ rhs1 = local_M_u; time_step, local_A_u); - // transfer into the global - // right hand side vector new_dof_indices (dofs_per_cell, DoFHandler::invalid_dof_index); new_cell->get_dof_indices (new_dof_indices); for (unsigned int i=0; ihas_children() && !new_cell->has_children()) { - // this is the right hand side of the - // first equation - // for the theta scheme: - // rhs1 := Mu^0 + kMv^0 - // -(1-theta)theta k^2 Au^0 Vector rhs1 (dofs_per_cell); - // this is the part of the right hand side - // of the second equation which depends - // on the solutions of the previous time - // step. - // for the theta scheme: - // rhs2 := Mv^0-(1-theta)kA^0 Vector rhs2 (dofs_per_cell); - // collect the contributions of the - // child cells (and possibly their - // children as well) collect_from_children (old_cell, fe_values, rhs1, rhs2); - // transfer into the global - // right hand side vector new_dof_indices (dofs_per_cell); new_cell->get_dof_indices (new_dof_indices); for (unsigned int i=0; ihas_children() && new_cell->has_children()) { - // vector of values of the function - // on the old grid restricted to - // the large (old) cell Vector old_dof_values_u (dofs_per_cell); Vector old_dof_values_v (dofs_per_cell); old_cell->get_dof_values (previous_time_level.u, old_dof_values_u); old_cell->get_dof_values (previous_time_level.v, old_dof_values_v); - // distribute the contribution of the - // large old cell to the children on - // the new cell distribute_to_children (new_cell, fe_values, old_dof_values_u, old_dof_values_v, right_hand_side1, right_hand_side2); @@ -8302,14 +7377,8 @@ TimeStep_Primal::collect_from_children (const DoFHandler::cell_iterato FEValues &fe_values, Vector &rhs1, Vector &rhs2) const { - // maximal difference of levels between the - // cell to which we write and the cells from - // which we read. Default is one, but this is - // increased with each level of recursion unsigned int level_difference = 1; - // select the TimeStep_Wave part in the - // TimeStep_Primal branch const TimeStep_Primal &previous_time_level = static_cast*>(previous_timestep)->get_timestep_primal(); @@ -8319,30 +7388,14 @@ TimeStep_Primal::collect_from_children (const DoFHandler::cell_iterato FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); - // these will hold the values of the - // solution on the old grid, i.e. on - // the small cells Vector local_old_dof_values_u (dofs_per_cell); Vector local_old_dof_values_v (dofs_per_cell); - // same for the contributions to the - // right hand sides of the projection Vector local_M_u (dofs_per_cell); Vector local_M_v (dofs_per_cell); Vector local_A_u (dofs_per_cell); - // this is the right hand side of the - // first equation - // for the theta scheme: - // rhs1 := Mu^0 + kMv^0 - // -(1-theta)theta k^2 Au^0 Vector child_rhs1 (dofs_per_cell); - // this is the part of the right hand side - // of the second equation which depends - // on the solutions of the previous time - // step. - // for the theta scheme: - // rhs2 := Mv^0-(1-theta)kA^0 Vector child_rhs2 (dofs_per_cell); for (unsigned int c=0; c::children_per_cell; ++c) @@ -8352,9 +7405,6 @@ FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); child_rhs1.clear (); child_rhs2.clear (); - // if this child is further subdivided: - // collect the contributions of the - // children if (old_child->has_children()) { const unsigned int l = collect_from_children (old_child, fe_values, @@ -8368,12 +7418,9 @@ FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); const vector > >&gradients = fe_values.get_shape_grads (); const vector &weights = fe_values.get_JxW_values (); - // get solutions restricted to small - // cell old_child->get_dof_values (previous_time_level.u, local_old_dof_values_u); old_child->get_dof_values (previous_time_level.v, local_old_dof_values_v); - // compute M*(u+kv) on the small cell cell_matrix.clear (); vector density_values(fe_values.n_quadrature_points); parameters.density->value_list (fe_values.get_quadrature_points(), @@ -8389,8 +7436,6 @@ FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); cell_matrix.vmult (local_M_u, local_old_dof_values_u); cell_matrix.vmult (local_M_v, local_old_dof_values_v); - // now for the part with the laplace - // matrix cell_matrix.clear (); vector stiffness_values(fe_values.n_quadrature_points); @@ -8417,9 +7462,6 @@ FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); local_A_u); }; - // transfer the contribution of this - // child cell to its parent cell - // (#true# means: add up) fe.prolongate(c).Tvmult (rhs1, child_rhs1, true); fe.prolongate(c).Tvmult (rhs2, child_rhs2, true); }; @@ -8436,64 +7478,36 @@ TimeStep_Primal::distribute_to_children (const DoFHandler::cell_iterat const Vector &old_dof_values_v, Vector &right_hand_side1, Vector &right_hand_side2) { - // maximal difference of levels between the - // cell to which we write and the cells from - // which we read. Default is one, but this is - // increased with each level of recursion unsigned int level_difference = 1; const unsigned int dofs_per_cell = fe.dofs_per_cell; const double time_step = get_backward_timestep(); FullMatrix cell_matrix(dofs_per_cell, dofs_per_cell); - // set up a vector which will hold the - // restriction of the old - // functions (u,v) to a childcell Vector local_old_dof_values_u (dofs_per_cell); Vector local_old_dof_values_v (dofs_per_cell); - // vector of old u and v times the local - // mass matrix (on the small cells - // respectively) Vector local_M_u (dofs_per_cell); Vector local_M_v (dofs_per_cell); Vector local_A_u (dofs_per_cell); - // this is the right hand side of the - // first equation - // for the theta scheme: - // rhs1 := Mu^0 + kMv^0 - // -(1-theta)theta k^2 Au^0 Vector rhs1 (dofs_per_cell); - // this is the part of the right hand side - // of the second equation which depends - // on the solutions of the previous time - // step. - // for the theta scheme: - // rhs2 := Mv^0-(1-theta)kA^0 Vector rhs2 (dofs_per_cell); - // indices of the dofs of a cell on - // the new grid vector new_dof_indices (dofs_per_cell, DoFHandler::invalid_dof_index); -// loop over the child cells for (unsigned int c=0; c::children_per_cell; ++c) { const DoFHandler::cell_iterator new_child = new_cell->child(c); - // get u and v on the childcells fe.prolongate(c).vmult (local_old_dof_values_u, old_dof_values_u); fe.prolongate(c).vmult (local_old_dof_values_v, old_dof_values_v); if (new_child->has_children()) - // cell on new grid is further refined - // distribute data on this local cell - // to its children { const unsigned int l = distribute_to_children (new_child, fe_values, local_old_dof_values_u, @@ -8503,15 +7517,12 @@ TimeStep_Primal::distribute_to_children (const DoFHandler::cell_iterat level_difference = max (l+1, level_difference); } else - // child is not further refined - // -> directly distribute data { fe_values.reinit (new_child); const FullMatrix &values = fe_values.get_shape_values (); const vector > >&gradients = fe_values.get_shape_grads (); const vector &weights = fe_values.get_JxW_values (); - // transfer u+kv cell_matrix.clear (); vector density_values(fe_values.n_quadrature_points); parameters.density->value_list (fe_values.get_quadrature_points(), @@ -8527,8 +7538,6 @@ TimeStep_Primal::distribute_to_children (const DoFHandler::cell_iterat cell_matrix.vmult (local_M_u, local_old_dof_values_u); cell_matrix.vmult (local_M_v, local_old_dof_values_v); - // now for the part with the laplace - // matrix cell_matrix.clear (); vector stiffness_values(fe_values.n_quadrature_points); parameters.stiffness->value_list (fe_values.get_quadrature_points(), @@ -8553,8 +7562,6 @@ TimeStep_Primal::distribute_to_children (const DoFHandler::cell_iterat time_step, local_A_u); - // transfer into the global - // right hand side new_child->get_dof_indices (new_dof_indices); for (unsigned int i=0; i::distribute_to_children (const DoFHandler::cell_iterat }; -// explicit instantiations template class TimeStep_Primal<2>; /* $Id$ */ @@ -8602,7 +7608,6 @@ void UserMatrix::precondition (Vector &dst, #include -// static objects const FEQ1<2> FEHelper<2>::fe_linear; const FEQ2<2> FEHelper<2>::fe_quadratic_sub; @@ -8723,7 +7728,6 @@ string int_to_string (const unsigned int i, const unsigned int digits) { }; -// explicit instantiations template class FEHelper<2>; @@ -8772,14 +7776,10 @@ template void WaveProblem::run (ParameterHandler &prm) { parse_parameters (prm); -// prm.print_parameters (logfile, Text); -//////////////////////////////// - // Set up the time step objects TimestepManager timestep_manager (parameters); if (true) { - // push back initial level timestep_manager.add_timestep (new TimeStep(0, parameters)); double time = 0; unsigned int step_no = 0; @@ -8789,19 +7789,12 @@ void WaveProblem::run (ParameterHandler &prm) { ++step_no; - // if on last time step - // allow last time step to - // be at most 10% longer than - // initially wanted if (time+parameters.time_step*1.1 >= parameters.end_time) local_time_step = parameters.end_time-time; else - // equilibrate time step size - // of the two last time steps if (time+2*parameters.time_step >= parameters.end_time) local_time_step = (parameters.end_time-time)/2; else - // regular time step local_time_step = parameters.time_step; time += local_time_step; @@ -8811,9 +7804,6 @@ void WaveProblem::run (ParameterHandler &prm) }; -//////////////////////////////////// - // actually do the work (or rather: - // let the work be done) for (unsigned int sweep=0; sweep::run (ParameterHandler &prm) int main () { - // no additional output to console deallog.attach(logfile); logfile.setf(ios::fixed); logfile.precision (3); @@ -8845,7 +7834,6 @@ int main () << "Aborting!" << endl << "----------------------------------------------------" << endl; - // abort return 1; }; @@ -8862,7 +7850,6 @@ int main () << "Aborting!" << endl << "----------------------------------------------------" << endl; - // abort return 2; } catch (...) @@ -8874,7 +7861,6 @@ int main () << "Aborting!" << endl << "----------------------------------------------------" << endl; - // abort return 3; }; -- 2.39.5