From e32412c89896cdfa41f8465028468b9c0eda3b70 Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Mon, 21 Apr 2003 16:07:20 +0000 Subject: [PATCH] Clarify the docs of the hierarchical polynomials, and change what generate_complete_basis does in the case k==0. git-svn-id: https://svn.dealii.org/trunk@7414 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/base/include/base/polynomial.h | 43 ++++++++++++++++++++------ deal.II/base/source/polynomial.cc | 33 +++++++++++++++----- 2 files changed, 59 insertions(+), 17 deletions(-) diff --git a/deal.II/base/include/base/polynomial.h b/deal.II/base/include/base/polynomial.h index a5bbe5f7f7..ee6f29dd39 100644 --- a/deal.II/base/include/base/polynomial.h +++ b/deal.II/base/include/base/polynomial.h @@ -239,7 +239,7 @@ namespace Polynomials * space of polynomials up to the * given degree. The polynomials * are generated by calling the - * destructor of this class with + * constructor of this class with * the same degree but support * point running from zero to * @p{degree}. This function may @@ -366,6 +366,22 @@ namespace Polynomials * polynomials in any way, although better conditioning of the * element stiffness matrix could possibly be achieved with scaling. * + * Calling the constructor with a given index @p{p} will generate the + * following: if @p{p==0}, then the resulting polynomial is the linear + * function associated with the left vertex, if @p{p==1} the one + * associated with the right vertex. For higher values of @p{p}, you + * get the polynomial of degree @p{p} that is orthogonal to all + * previous ones. Note that for @p{p==0} you therefore do @em{not} + * get a polynomial of degree zero, but one of degree one. This is to + * allow generating a complete basis for polynomial spaces, by just + * iterating over the indices given to the constructor. + * + * On the other hand, the function @p{generate_complete_basis} creates + * a complete basis of given degree. In order to be consistent with + * the concept of a polynomial degree, if the given argument is zero, + * it does @em{not} return the linear polynomial described above, but + * rather a constant polynomial. + * * @author Brian Carnes, 2002 */ template @@ -374,19 +390,28 @@ namespace Polynomials public: /** * Constructor for polynomial of - * order @p{p}. + * order @p{p}. There is an + * exception for @p{p==0}, see + * the general documentation. */ Hierarchical (const unsigned int p); /** - * Return a vector of Hierarchical - * polynomial objects of orders - * zero through @p{degree}, which - * then spans the full space of - * polynomials up to the given - * degree. This function may be + * Return a vector of + * Hierarchical polynomial + * objects of orders zero through + * @p{degree}, which then spans + * the full space of polynomials + * up to the given degree. Note + * that there is an exception if + * the given @p{degree} equals + * zero, see the general + * documentation of this class. + * + * This function may be * used to initialize the - * @ref{TensorProductPolynomials} + * @ref{TensorProductPolynomials}, + * @ref{AnisotropicPolynomials}, * and @ref{PolynomialSpace} * classes. */ diff --git a/deal.II/base/source/polynomial.cc b/deal.II/base/source/polynomial.cc index 38ac842782..373485c3c9 100644 --- a/deal.II/base/source/polynomial.cc +++ b/deal.II/base/source/polynomial.cc @@ -34,6 +34,7 @@ namespace } + namespace Polynomials { @@ -41,7 +42,8 @@ namespace Polynomials template - Polynomial::Polynomial (const std::vector &a): + Polynomial::Polynomial (const std::vector &a) + : coefficients(a) {} @@ -119,8 +121,8 @@ namespace Polynomials template void - Polynomial::scale(std::vector& coefficients, - const number factor) + Polynomial::scale(std::vector &coefficients, + const number factor) { double f = 1.; for (typename std::vector::iterator c = coefficients.begin(); @@ -841,11 +843,26 @@ namespace Polynomials std::vector > Hierarchical::generate_complete_basis (const unsigned int degree) { - std::vector > v; - v.reserve(degree+1); - for (unsigned int i=0; i<=degree; ++i) - v.push_back (Hierarchical(i)); - return v; + if (degree==0) + // create constant + // polynomial. note that we + // can't use the other branch + // of the if-statement, since + // calling the constructor of + // this class with argument + // zero does _not_ create the + // constant polynomial, but + // rather 1-x + return std::vector > + (1, Polynomial (std::vector (1,1.))); + else + { + std::vector > v; + v.reserve(degree+1); + for (unsigned int i=0; i<=degree; ++i) + v.push_back (Hierarchical(i)); + return v; + } } } -- 2.39.5