From e44247a6fd690407039b376a0bffab3b07c4c476 Mon Sep 17 00:00:00 2001 From: bangerth Date: Sun, 5 Nov 2006 23:21:45 +0000 Subject: [PATCH] A bit more documentation. git-svn-id: https://svn.dealii.org/trunk@14151 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-25/doc/intro.dox | 84 +++- deal.II/examples/step-25/step-25.cc | 670 +++++++++++-------------- 2 files changed, 358 insertions(+), 396 deletions(-) diff --git a/deal.II/examples/step-25/doc/intro.dox b/deal.II/examples/step-25/doc/intro.dox index 3ccfb2638f..92c4f67e12 100644 --- a/deal.II/examples/step-25/doc/intro.dox +++ b/deal.II/examples/step-25/doc/intro.dox @@ -138,8 +138,8 @@ denoted by the same letter in lower case; e.g., $u^n = \sum_{i=1}^N U^n_i \varphi_i$ where $U^n \in {R}^N$ and $u^n \in H^1(\Omega)$. Thus, the finite-dimensional version of the variational fomulation requires that we solve the following matrix equations at each time step: @f{eqnarray*} - F_h'(U^n_l)\delta U^n_l &=& -F_h(U^n_l), \quad - U^n_{l+1} = U^n_l + \delta U^n_l, \quad U^n_0 = U^{n-1}; \\ + F_h'(U^n_l)\delta U^n_l &=& -F_h(U^n_l), \qquad + U^n_{l+1} = U^n_l + \delta U^n_l, \qquad U^n_0 = U^{n-1}; \\ MV^n &=& MV^{n-1} - k \theta AU^n -k (1-\theta) AU^{n-1} - k S(u^n,u^{n-1}). @f} Above, the matrix $F_h'(\cdot)$ and the vector $F_h(\cdot)$ denote the discrete versions of the gadgets discussed above, i.e. @@ -162,6 +162,36 @@ nonlinear term in the Jacobian matrix of $F(\cdot)$, i.e. $N_{ij}(f,g) = \left( \cos\left[ \theta f + (1-\theta) g\right]\varphi_i, \varphi_j \right)_{\Omega}$. +What solvers can we use for the first equation? Let's look at the matrix we +have to invert: +@f[ + M-k^2\theta^2N)_{ij} = + \int_\Omega (1-k^2\theta^2 \cos \alpha) + \varphi_i\varphi_j \; dx, +@f] +for some $\alpha$ that depends on the present and previous solution. First, +note that the matrix is symmetric. In addition, if the time step $k$ is small +enough, i.e. if $k\theta<1$ then the matrix is also going to be positive +definite. In the program below, this will always be the case, so we will use +the Conjugate Gradient method together with the SSOR method as +preconditioner. We should keep in mind, however, that this is a point that +will break if we happen to use a bigger time step. Fortunately, in that case +the solver will just throw an exception indicating a failure to converge, +rather than silently producing a wrong result. If that happens, then we can +simply replace the CG method by something that can handle indefinite symmetric +systems. The GMRES solver is typically the standard method for all "bad" +linear systems, but it is also a slow one. Possibly better would be a solver +that utilizes the symmetry, such as for example SymmLQ, which is also +implemented in deal.II. + +This program uses a clever optimization over @ref step_23 "step-23" and @ref +step_24 "step-24": If you read the above formulas closely, it becomes clear +that the velocity $V$ only ever appears in products with the mass matrix. In +@ref step_23 "step-23" and @ref step_24 "step-24", we we therefore a bit +wasteful: in each time step, we would solve a linear system with the mass +matrix, only to multiply the solution of that system by $M$ again in the next +time step. This can, of course, be avoided, and we do so in this program. +

The testcase

@@ -184,10 +214,50 @@ $\phi$ and $\tau$ in the 3D solution are called the Bäcklund transformation parameters. They control such things as the orientation and steepness of the kink. For the purposes of testing the code against the exact solution, one should choose the parameters so that the kink is aligned with -the grid +the grid. + +The solutions that we implement in the ExactSolution class are +this: + -In 1D, more interesting analytical solutions are known. Many of them are -listed on http://mathworld.wolfram.com/Sine-GordonEquation.html . We have -implemented the one kink, two kink, kink-antikink and stationary breather -solitary-wave solutions. +Since it makes it easier to play around, the InitialValues class +that is used to set — surprise! — the initial values of our +simulation simply queries the class that describes the exact solution for the +value at the start time, rather than duplicating the effort to implement a +solution function. diff --git a/deal.II/examples/step-25/step-25.cc b/deal.II/examples/step-25/step-25.cc index 4de0038734..428ff70a7c 100644 --- a/deal.II/examples/step-25/step-25.cc +++ b/deal.II/examples/step-25/step-25.cc @@ -31,7 +31,7 @@ #include #include #include -#include +#include #include #include #include @@ -71,6 +71,7 @@ using namespace dealii; // class-encapsulation of the // problem, the reader should consult // step-3 and step-4. +//TODO template class SineGordonProblem { @@ -87,7 +88,7 @@ class SineGordonProblem void compute_nl_matrix (const Vector &old_data, const Vector &new_data, SparseMatrix &nl_matrix) const; - void solve (); + unsigned int solve (); void output_results (const unsigned int timestep_number); Triangulation triangulation; @@ -105,7 +106,6 @@ class SineGordonProblem Vector solution, d_solution, old_solution; Vector massmatxvel; Vector system_rhs; - Vector fem_errors; DataOutStack data_out_stack; @@ -113,61 +113,31 @@ class SineGordonProblem static const int n_global_refinements = 6; }; - // @sect3{Exact solitary wave solutions of the sine-Gordon equation} - - // A kink-like solitary wave solution - // to the (dim+1) - // dimensional sine-Gordon equation, - // which we can test our code - // against, is given by Leibbrandt in - // \e Phys. \e Rev. \e Lett. \b - // 41(7), and is implemented in the - // ExactSolution class. - // However, it should be noted that a - // closed-form solution can only be - // obtained for the infinite-line - // initial-value problem (not the - // Neumann initial-boundary-value - // problem under consideration - // here). However, given that we - // impose \e zero Neumann boundary - // conditions, we expect that the - // solution to our - // initial-boundary-value problem - // would be close (in fact, equal) to - // the solution infinite-line - // initial-value problem, if - // reflections of waves off the - // boundaries of our domain do \e not - // occur. - // - // The constants $\vartheta$ - // (th) and $\lambda$ - // (ld) in the 2D - // solution and $\vartheta$ - // (th), $\phi$ - // (phi) and $\tau$ - // (tau) in the 3D - // solution are called the - // Bäcklund transformation - // parameters. They control such - // things as the orientation and - // steepness of the kink. For the - // purposes of testing the code - // against the exact solution, one - // should choose the parameters so - // that the kink is aligned with the - // grid, e.g. $\vartheta = \phi = - // \pi$. - // - // In 1D, more interesting analytical - // solutions are known. Many of them - // are listed on - // http://mathworld.wolfram.com/Sine-GordonEquation.html - // . We have implemented the one - // kink, two kink, kink-antikink and - // stationary breather solitary-wave - // solutions. + + // @sect3{Initial conditions} + + // In the following two classes, we first + // implement the exact solution for 1d, 2d, + // and 3d mentioned in the introduction to + // this program. This space-time solution may + // be of independent interest if one wanted + // to test the accuracy of the program by + // comparing the numerical against the + // analytic solution (note however that the + // program uses a finite domain, whereas + // these are analytic solutions for an + // unbounded domain). This may, for example, + // be done using the + // VectorTools::integrate_difference + // function. Note again (as was already + // discussed in step-23) how we describe + // space-time functions as spatial functions + // that depend on a time variable that can be + // set and queried using the + // FunctionTime::set_time() and + // FunctionTime::get_time() member functions + // of the FunctionTime base class of the + // Function class. template class ExactSolution : public Function { @@ -188,51 +158,39 @@ double ExactSolution::value (const Point &p, { case 1: { - double m = 0.5; - // double beta = - // std::sqrt(m*m-1.)/m; - double c1 = 0.; - double c2 = 0.; - // double s1 = 1.; - // double s2 = -1.; - - /* one kink (m>1) */ - /* return 4.*std::atan(std::exp(s1*(p[0]+s2*beta*t)/std::sqrt(1.-beta*beta))); */ - - /* two kinks (m>1) */ - /* return 4.*std::atan(beta*std::sinh(beta*m*p[0])/std::cosh(beta*m*t)); */ - - /* kink-antikink (m>1) */ - /* return -4.*std::atan(m/std::sqrt(m*m-1)*std::sinh(std::sqrt(m*m-1.)*t+c2)/ - std::cosh(m*p[0]+c1)); */ - - /* stationary breather (m<1), period = 2.*pi*sqrt(1.-m*m) - for m=0.5, -5.4414 <= t <= 2.7207 is a good time interval */ - return -4.*std::atan(m/std::sqrt(1.-m*m)*std::sin(std::sqrt(1.-m*m)*t+c2) - /std::cosh(m*p[0]+c1)); + const double m = 0.5; + const double c1 = 0.; + const double c2 = 0.; + return -4.*std::atan (m / + std::sqrt(1.-m*m) * + std::sin(std::sqrt(1.-m*m)*t+c2) / + std::cosh(m*p[0]+c1)); } case 2: { - double th = deal_II_numbers::PI/4.; - double ld = 1.; - double a0 = 1.; - double s = 1.; - double arg = 0.; - arg = p[0]*std::cos(th) + std::sin(th)*(p[1]*std::cosh(ld)+t*std::sinh(ld)); + const double theta = deal_II_numbers::PI/4.; + const double lambda = 1.; + const double a0 = 1.; + const double s = 1.; + const double arg = p[0] * std::cos(theta) + + std::sin(theta) * + (p[1] * std::cosh(lambda) + + t * std::sinh(lambda)); return 4.*std::atan(a0*std::exp(s*arg)); } case 3: { - double th = deal_II_numbers::PI; + double theta = deal_II_numbers::PI; double phi = deal_II_numbers::PI; double tau = 1.; double c0 = 1.; double s = 1.; - double arg = 0.; - arg = (p[0]*std::cos(th) + p[1]*std::sin(th)*std::cos(phi) - + std::sin(th)*std::sin(phi)*(p[2]*std::cosh(tau)+t*std::sinh(tau))); + double arg = p[0]*std::cos(theta) + + p[1]*std::sin(theta) * std::cos(phi) + + std::sin(theta) * std::sin(phi) * + (p[2]*std::cosh(tau)+t*std::sinh(tau)); return 4.*std::atan(c0*std::exp(s*arg)); } @@ -242,26 +200,25 @@ double ExactSolution::value (const Point &p, } } - // @sect3{Boundary values and initial values} - - // For our problem, we do not enforce - // Dirichlet boundary conditions and - // the Neumann boundary conditions - // are enforced directly through the - // variational formulation. However, - // since our problem is time - // dependent, we must specify the - // value of the independent variable - // $u$ at the initial time $t_0$. We - // do so via the - // InitialValues class - // below. + // The second part of this section is that we + // provide initial conditions. We are lazy + // (and cautious) and don't want to implement + // the same functions as above a second + // time. Rather, if we are queried for + // initial conditions, we create an object + // ExactSolution, set it to the + // correct time, and let it compute whatever + // values the exact solution has at that + // time: template class InitialValues : public Function { public: InitialValues (const unsigned int n_components = 1, - const double time = 0.) : Function(n_components, time) {}; + const double time = 0.) + : + Function(n_components, time) + {} virtual double value (const Point &p, const unsigned int component = 0) const; @@ -269,115 +226,83 @@ class InitialValues : public Function template double InitialValues::value (const Point &p, - const unsigned int /*component*/) const + const unsigned int component) const { - // We could also use a localized - // wave form for our initial - // condition, and see how it - // evolves when governed by the - // sine-Gordon equation. An example - // of such an initial condition is - // the following: - /* - if ((p[0]>=-M_PI) && (p[0]<=M_PI) && (p[1]>=-M_PI) && (p[1]<=M_PI)) { - return std::cos(p[0]/2.)*std::cos(p[1]/2.); - } else { - return 0.; - } - */ - - // In 2D, another possibility for a - // localized-wave initial condition - // is a separable solution composed - // of two 1D breathers: - double m = 0.5; - double t = this->get_time(); - double argx = m/std::sqrt(1-m*m)*std::sin(std::sqrt(1-m*m)*t)/std::cosh(m*p[0]); - double argy = m/std::sqrt(1-m*m)*std::sin(std::sqrt(1-m*m)*t)/std::cosh(m*p[1]); - return 16.*std::atan(argx)*std::atan(argy); - - // For the purposes of validating - // the program, we can use an exact - // solution of the sine-Gordon - // equation, at $t=t_0$, as the - // initial condition for our - // problem. Though, perhaps, this - // is not the most efficient way to - // implement the exact solution as - // the initial conditons, it is - // instuctive. - /* - ExactSolution exact_solution (1, this->get_time()); - return exact_solution.value (p); - */ + return ExactSolution(1, this->get_time()).value (p, component); } + + // @sect3{Implementation of the SineGordonProblem class} - // \b TO \b DO: present the big - // picture here? + // Let's move on to the implementation of the + // main class, as it implements the algorithm + // outlined in the introduction. // @sect4{SineGordonProblem::SineGordonProblem} // This is the constructor of the - // SineGordonProblem - // class. It specifies the desired - // polynomial degree of the finite - // elements, associates a + // SineGordonProblem class. It + // specifies the desired polynomial degree of + // the finite elements, associates a // DoFHandler to the - // triangulation object - // (just as in the example programs - // step-3 and step-4), initializes - // the current or initial time, the - // final time, the time step size, - // and the value of $\theta$ for the - // time stepping scheme. + // triangulation object (just as + // in the example programs step-3 and + // step-4), initializes the current or + // initial time, the final time, the time + // step size, and the value of $\theta$ for + // the time stepping scheme. Since the + // solutions we compute here are + // time-periodic, the actual value of the + // start-time doesn't matter, and we choose + // it so that we start at an interesting + // time. // - // Note that if we were to chose the - // explicit Euler time stepping - // scheme ($\theta = 0$), then we - // must pick a time step $k \le h$, - // otherwise the scheme is not stable - // and oscillations might arise in - // the solution. The Crank-Nicolson - // scheme ($\theta = \frac{1}{2}$) - // and the implicit Euler scheme - // ($\theta=1$) do not suffer from - // this deficiency, since they are - // unconditionally stable. However, - // even then the time step should be - // chosen to be on the order of $h$ - // in order to obtain a good - // solution. + // Note that if we were to chose the explicit + // Euler time stepping scheme ($\theta = 0$), + // then we must pick a time step $k \le h$, + // otherwise the scheme is not stable and + // oscillations might arise in the + // solution. The Crank-Nicolson scheme + // ($\theta = \frac{1}{2}$) and the implicit + // Euler scheme ($\theta=1$) do not suffer + // from this deficiency, since they are + // unconditionally stable. However, even then + // the time step should be chosen to be on + // the order of $h$ in order to obtain a good + // solution. Since we know that our mesh + // results from the uniform subdivision of a + // rectangle, we can compute that time step + // easily; if we had a different domain, the + // technique in step-24 using + // GridTools::minimal_cell_diameter would + // work as well. template -SineGordonProblem::SineGordonProblem () : +SineGordonProblem::SineGordonProblem () + : fe (1), dof_handler (triangulation), - time (-5.4414/*0.*/), - final_time (2.7207/*20.*/), + time (-5.4414), + final_time (2.7207), time_step (10*1./std::pow(2.,n_global_refinements)), theta (0.5) {} // @sect4{SineGordonProblem::make_grid_and_dofs} - // This function creates a - // rectangular grid in - // dim dimensions and - // refines it several times. Also, - // all matrix and vector members of - // the SineGordonProblem - // class are initialized to their - // approrpiate sizes once the degrees - // of freedom have been - // assembled. Unlike its analogue in - // step-3 (and step-4) this function - // uses MatrixCreator - // class to generate a mass matrix - // $M$ and a Laplace matrix $A$ and - // store them in the appropriate - // variables for the remainder of the - // program's life. + // This function creates a rectangular grid + // in dim dimensions and refines + // it several times. Also, all matrix and + // vector members of the + // SineGordonProblem class are + // initialized to their appropriate sizes + // once the degrees of freedom have been + // assembled. Like step-24, we use the + // MatrixCreator class to + // generate a mass matrix $M$ and a Laplace + // matrix $A$ and store them in the + // appropriate variables for the remainder of + // the program's life. template void SineGordonProblem::make_grid_and_dofs () { @@ -407,9 +332,11 @@ void SineGordonProblem::make_grid_and_dofs () mass_matrix.reinit (sparsity_pattern); laplace_matrix.reinit (sparsity_pattern); - MatrixCreator::create_mass_matrix (dof_handler, QGauss(3), + MatrixCreator::create_mass_matrix (dof_handler, + QGauss(3), mass_matrix); - MatrixCreator::create_laplace_matrix (dof_handler, QGauss(3), + MatrixCreator::create_laplace_matrix (dof_handler, + QGauss(3), laplace_matrix); solution.reinit (dof_handler.n_dofs()); @@ -417,36 +344,29 @@ void SineGordonProblem::make_grid_and_dofs () old_solution.reinit (dof_handler.n_dofs()); massmatxvel.reinit (dof_handler.n_dofs()); system_rhs.reinit (dof_handler.n_dofs()); - - // We will use the - // fem_errors vector, - // which is of size equal to the - // number of time steps, to store - // the errors in the finite element - // solution after each time - // step. Note that we must make the - // first element of the vector - // equal to zero, since there is no - // error in the solution after - // zeroth time step because the - // solution is just the initial - // condition. - const unsigned int n_time_steps - = static_cast(std::ceil(std::fabs(final_time-time)/time_step)); - fem_errors.reinit (n_time_steps); - fem_errors(0) = 0.; } // @sect4{SineGordonProblem::assemble_system} - // This functions assembles the - // system matrix and right-hand side - // vector for each iteration of - // Newton's method. The reader should - // refer to the last section of the - // Introduction for the explicit - // formulas for the system matrix and - // right-hand side. + // This functions assembles the system matrix + // and right-hand side vector for each + // iteration of Newton's method. The reader + // should refer to the Introduction for the + // explicit formulas for the system matrix + // and right-hand side. + // + // Note that in each time step, we have to + // add up the various contributions to the + // matrix and right hand sides. In contrast + // to step-23 and step-24, this requires + // assembling a few more terms, since they + // depend on the solution of the previous + // time step or previous nonlinear step. We + // use the functions + // compute_nl_matrix and + // compute_nl_term to do this, + // while the present function provides the + // top-level logic. template void SineGordonProblem::assemble_system () { @@ -458,6 +378,7 @@ void SineGordonProblem::assemble_system () system_matrix = 0; system_matrix.copy_from (mass_matrix); system_matrix.add (std::pow(time_step*theta,2), laplace_matrix); + SparseMatrix tmp_matrix (sparsity_pattern); compute_nl_matrix (old_solution, solution, tmp_matrix); system_matrix.add (-std::pow(time_step*theta,2), tmp_matrix); @@ -469,6 +390,7 @@ void SineGordonProblem::assemble_system () tmp_matrix = 0; tmp_matrix.copy_from (mass_matrix); tmp_matrix.add (std::pow(time_step*theta,2), laplace_matrix); + Vector tmp_vector (solution.size()); tmp_matrix.vmult (tmp_vector, solution); system_rhs += tmp_vector; @@ -476,6 +398,7 @@ void SineGordonProblem::assemble_system () tmp_matrix = 0; tmp_matrix.copy_from (mass_matrix); tmp_matrix.add (-std::pow(time_step,2)*theta*(1-theta), laplace_matrix); + tmp_vector = 0; tmp_matrix.vmult (tmp_vector, old_solution); system_rhs -= tmp_vector; @@ -492,41 +415,51 @@ void SineGordonProblem::assemble_system () // @sect4{SineGordonProblem::compute_nl_term} // This function computes the vector - // $S(\cdot,\cdot)$ corresponding to - // the nonlinear term in the - // auxilliary (second) equation of - // the split formulation. This - // function not only simplifies the - // repeated computation of this term, - // but it is also a fundamental part - // of nonlinear iterative solver that - // we use when the time stepping is - // implicit (i.e. $\theta\ne - // 0$). Moreover, we must allow the - // function to receive as input an - // "old" and a "new" solution, which - // may not be the actual solutions of - // the problem stored in + // $S(\cdot,\cdot)$, which appears in the + // nonlinear term in the both equations of + // the split formulation. This function not + // only simplifies the repeated computation + // of this term, but it is also a fundamental + // part of the nonlinear iterative solver + // that we use when the time stepping is + // implicit (i.e. $\theta\ne 0$). Moreover, + // we must allow the function to receive as + // input an "old" and a "new" solution. These + // may not be the actual solutions of the + // problem stored in // old_solution and - // solution. For the - // purposes of this function, let us - // call the first two arguments - // $w_{\mathrm{old}}$ and - // $w_{\mathrm{new}}$, respectively. + // solution, but are simply the + // two functions we linearize around. For the + // purposes of this function, let us call the + // first two arguments $w_{\mathrm{old}}$ and + // $w_{\mathrm{new}}$ in the documentation of + // this class below, respectively. // - // It is perhaps worth investigating - // what order quadrature formula is - // best suited for this type of - // integration, since $\sin(\cdot)$ - // is an oscillatory function. + // As a side-note, it is perhaps worth + // investigating what order quadrature + // formula is best suited for this type of + // integration. Since $\sin(\cdot)$ is not a + // polynomial, there are probably no + // quadrature formulas that can integrate + // these terms exactly. It is usually + // sufficient to just make sure that the + // right hand side is integrated up to the + // same order of accuracy as the + // discretization scheme is, but it may be + // possible to improve on the constant in the + // asympotitic statement of convergence by + // choosing a more accurate quadrature + // formula. template void SineGordonProblem::compute_nl_term (const Vector &old_data, const Vector &new_data, Vector &nl_term) const { - QGauss quadrature_formula (3); - FEValues fe_values (fe, quadrature_formula, - update_values | update_JxW_values | update_q_points); + const QGauss quadrature_formula (3); + FEValues fe_values (fe, quadrature_formula, + update_values | + update_JxW_values | + update_q_points); const unsigned int dofs_per_cell = fe.dofs_per_cell; const unsigned int n_q_points = quadrature_formula.n_quadrature_points; @@ -543,32 +476,27 @@ void SineGordonProblem::compute_nl_term (const Vector &old_data, for (; cell!=endc; ++cell) { // Once we re-initialize our - // FEValues - // instantiation to the current - // cell, we make use of the - // get_function_values - // routine to get the obtain - // the values of the "old" data - // (presumably at $t=t_{n-1}$) - // and the "new" data - // (presumably at $t=t_n$) at - // the nodes of the chosen - // quadrature formula. + // FEValues instantiation + // to the current cell, we make use of + // the get_function_values + // routine to get the values of the + // "old" data (presumably at + // $t=t_{n-1}$) and the "new" data + // (presumably at $t=t_n$) at the nodes + // of the chosen quadrature formula. fe_values.reinit (cell); fe_values.get_function_values (old_data, old_data_values); fe_values.get_function_values (new_data, new_data_values); // Now, we can evaluate $\int_K - // \sin\left[\theta - // w_{\mathrm{new}} + - // (1-\theta) - // w_{\mathrm{old}}\right]\,\varphi_j\,\mathrm{d}x$ - // using the desired quadrature - // formula. + // \sin\left[\theta w_{\mathrm{new}} + + // (1-\theta) w_{\mathrm{old}}\right] + // \,\varphi_j\,\mathrm{d}x$ using the + // desired quadrature formula. for (unsigned int q_point=0; q_point::compute_nl_term (const Vector &old_data, // @sect4{SineGordonProblem::compute_nl_matrix} - // This function computes the matrix - // $N(\cdot,\cdot)$ corresponding to - // the nonlinear term in the Jacobian - // of $F(\cdot)$. It is also a - // fundamental part of nonlinear - // iterative solver. Just as - // compute_nl_term, we - // must allow this function to - // receive as input an "old" and a - // "new" solution, which we call the - // $w_{\mathrm{old}}$ and - // $w_{\mathrm{new}}$, respectively. + // This second function dealing with the + // nonlinear scheme computes the matrix + // $N(\cdot,\cdot)$ appearing in the + // nonlinear term in the Jacobian of + // $F(\cdot)$. Just as + // compute_nl_term, we must + // allow this function to receive as input an + // "old" and a "new" solution, which we again + // call $w_{\mathrm{old}}$ and + // $w_{\mathrm{new}}$ below, respectively. template void SineGordonProblem::compute_nl_matrix (const Vector &old_data, const Vector &new_data, @@ -643,8 +569,8 @@ void SineGordonProblem::compute_nl_matrix (const Vector &old_data, for (unsigned int q_point=0; q_point::compute_nl_matrix (const Vector &old_data, } } - // @sect4{SineGordonProblem::compute_error} - - // This function computes the norm of - // the difference between the - // computed (i.e., finite element) - // solution after time step - // timestep_number and - // the exact solution to see how well - // we are doing. There are several - // choices for norms available to us - // in the VectorTools - // class. We use the $L^2$ norm - // because it is a natural choice for - // our problem, since the solutions - // to the sine-Gordon equation have - // finite energy or, equivalently, - // are $L^2$ functions. Given our - // weak formulation of the - // sine-Gordon equation, we are - // computing a solution $u\in - // H^1(\Omega)$, hence we could also - // use the $H^1$ norm to compute the - // error of the spatial - // discretization. For more - // information on the details behind - // this computation, the reader - // should refer to step-7. -/* -template -void SineGordonProblem::compute_error (const unsigned int timestep_number) -{ -//TODO: do we need this still now? And do we still need fem_errors? We never call this function since exact_solution_known was always false... - ExactSolution exact_solution (1, time); - - Vector difference_per_cell (triangulation.n_active_cells()); - VectorTools::integrate_difference (dof_handler, - solution, - exact_solution, - difference_per_cell, - QGauss(3), - VectorTools::L2_norm); - fem_errors(timestep_number) = difference_per_cell.l2_norm(); - - std::cout << " The L^2 error in the solution is " - << fem_errors(timestep_number) << "." - << std::endl; -} -*/ + // @sect4{SineGordonProblem::solve} - // This function uses the GMRES - // iterative solver on the linear - // system of equations resulting from - // the finite element spatial - // discretization of each iteration - // of Newton's method for the - // (nonlinear) first equation in the - // split formulation we derived in - // the Introduction. The solution to - // the system is, in fact, $\delta - // U^n_l$ so it is stored in - // d_solution and used - // to update solution in - // the run function. We - // cannot use the Conjugate Gradient - // solver because the nonlinear term - // in the Jacobian matrix results in - // a non-positive-definite matrix to - // invert. Moreover, we would like - // the solver to quit when the \e - // relative error is $10^{-12}$. This - // function is similar to its - // analogue in step-3 (and step-4); - // the only difference is the choice - // of iterative solver and the new - // stopping criterion. + // As discussed in the Introduction, this + // function uses the CG iterative solver on + // the linear system of equations resulting + // from the finite element spatial + // discretization of each iteration of + // Newton's method for the (nonlinear) first + // equation of the split formulation. The + // solution to the system is, in fact, + // $\delta U^n_l$ so it is stored in + // d_solution and used to update + // solution in the + // run function. + // + // Note that we re-set the solution update to + // zero before solving for it. This is not + // necessary: iterative solvers can start + // from any point and converge to the correct + // solution. If one has a good estimate about + // the solution of a linear system, it may be + // worthwhile to start from that vector, but + // as a general observation it is a fact that + // the starting point doesn't matter very + // much: it has to be a very very good guess + // to reduce the number of iterations by more + // than a few. It turns out that here, it + // using the previous nonlinear update as a + // starting point actually hurts and + // increases the number of iterations needed, + // so we simply set it to zero. template -void SineGordonProblem::solve () +unsigned int +SineGordonProblem::solve () { SolverControl solver_control (1000, 1e-12*system_rhs.l2_norm()); - SolverGMRES<> gmres (solver_control); + SolverCG<> cg (solver_control); + + PreconditionSSOR<> preconditioner; + preconditioner.initialize(system_matrix, 1.2); + d_solution = 0; - gmres.solve (system_matrix, d_solution, system_rhs, PreconditionIdentity()); + cg.solve (system_matrix, d_solution, + system_rhs, + preconditioner); - std::cout << " " << solver_control.last_step() - << " GMRES iterations needed to obtain convergence." - << std::endl; + return solver_control.last_step(); } // @sect4{SineGordonProblem::output_results} @@ -821,11 +708,8 @@ void SineGordonProblem::output_results (const unsigned int timestep_number) // control over everything: it runs // the (outer) time-stepping loop, // the (inner) nonlinear-solver loop, - // outputs the solution after each - // time step and calls the - // compute_error routine - // after each time step if an exact - // solution is known. + // and outputs the solution after each + // time step. template void SineGordonProblem::run () { @@ -897,7 +781,7 @@ void SineGordonProblem::run () old_solution = solution; std::cout << std::endl - << " Time step #" << timestep_number << "; " + << "Time step #" << timestep_number << "; " << "advancing to t = " << time << "." << std::endl; @@ -915,19 +799,30 @@ void SineGordonProblem::run () // loop below is done, we have // (an approximation of) $U^n$. double initial_rhs_norm = 0.; - unsigned int nliter = 1; + bool first_iteration = true; do { assemble_system (); - if (nliter == 1) initial_rhs_norm = system_rhs.l2_norm(); - std::cout << " [NLITER]"; - solve (); + + if (first_iteration == true) + initial_rhs_norm = system_rhs.l2_norm(); + + const unsigned int n_iterations + = solve (); + solution += d_solution; - d_solution = 0; - nliter++; + + if (first_iteration == true) + std::cout << " " << n_iterations; + else + std::cout << '+' << n_iterations; + first_iteration = false; } while (system_rhs.l2_norm() > 1e-6 * initial_rhs_norm); - + + std::cout << " CG iterations per nonlinear step." + << std::endl; + // In the case of the explicit // Euler time stepping scheme, // we must pick the time step @@ -947,20 +842,17 @@ void SineGordonProblem::run () if (timestep_number % output_timestep_skip == 0) output_results (timestep_number); - // Upon obtaining the solution - // to the problem at $t=t_n$, - // we must update the + // Upon obtaining the solution to the + // first equation of the problem at + // $t=t_n$, we must update the // auxilliary velocity variable - // $V^n$. However, we do not - // compute and store $V^n$ - // since it is not a quantity - // we use directly in the - // problem. Hence, for - // simplicity, we update $MV^n$ - // directly using the second - // equation in the last - // subsection of the - // Introduction. + // $V^n$. However, we do not compute + // and store $V^n$ since it is not a + // quantity we use directly in the + // problem. Hence, for simplicity, we + // update $MV^n$ directly using the + // second equation in the last + // subsection of the Introduction. Vector tmp_vector (solution.size()); laplace_matrix.vmult (tmp_vector, solution); massmatxvel.add (-time_step*theta, tmp_vector); -- 2.39.5