From e6499ca57e0a536ab9b4592be2ee91d913438df1 Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Tue, 26 Jun 2007 05:01:23 +0000 Subject: [PATCH] Remove a few functions that had been commented out. Follow our usual style in a few other places. git-svn-id: https://svn.dealii.org/trunk@14801 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/lac/include/lac/sparse_matrix_ez.h | 212 ++------------------- 1 file changed, 19 insertions(+), 193 deletions(-) diff --git a/deal.II/lac/include/lac/sparse_matrix_ez.h b/deal.II/lac/include/lac/sparse_matrix_ez.h index eb59a78c7e..88a5d84d54 100644 --- a/deal.II/lac/include/lac/sparse_matrix_ez.h +++ b/deal.II/lac/include/lac/sparse_matrix_ez.h @@ -21,8 +21,6 @@ #include -//TODO: Implement or remove the commented out functions - DEAL_II_NAMESPACE_OPEN template class Vector; @@ -116,26 +114,19 @@ class SparseMatrixEZ : public Subscriptor * Constructor. Fills column * and value. */ - Entry(unsigned int column, - const number& value); + Entry (const unsigned int column, + const number& value); /** * The column number. */ unsigned int column; + /** * The value there. */ number value; - /** - * Comparison operator for finding. - */ -// bool operator==(const Entry&) const; - /** - * Less than operator for sorting. - */ -// bool operator < (const Entry&) const; /** * Non-existent column number. */ @@ -483,34 +474,6 @@ class SparseMatrixEZ : public Subscriptor */ void add (const unsigned int i, const unsigned int j, const number value); - - /** - * Symmetrize the matrix by - * forming the mean value between - * the existing matrix and its - * transpose, $A = \frac 12(A+A^T)$. - * - * This operation assumes that - * the underlying sparsity - * pattern represents a symmetric - * object. If this is not the - * case, then the result of this - * operation will not be a - * symmetric matrix, since it - * only explicitly symmetrizes - * by looping over the lower left - * triangular part for efficiency - * reasons; if there are entries - * in the upper right triangle, - * then these elements are missed - * in the - * symmetrization. Symmetrization - * of the sparsity pattern can be - * obtain by the - * SparsityPattern@p ::symmetrize - * function. - */ -// void symmetrize (); /** * Copy the given matrix to this @@ -541,55 +504,6 @@ class SparseMatrixEZ : public Subscriptor template SparseMatrixEZ & copy_from (const MATRIX &source); - - /** - * This function is complete - * analogous to the - * SparsityPattern@p ::copy_from - * function in that it allows to - * initialize a whole matrix in - * one step. See there for more - * information on argument types - * and their meaning. You can - * also find a small example on - * how to use this function - * there. - * - * The only difference to the - * cited function is that the - * objects which the inner - * iterator points to need to be - * of type std::pair, - * where @p value - * needs to be convertible to the - * element type of this class, as - * specified by the @p number - * template argument. - * - * Previous content of the matrix - * is overwritten. Note that the - * entries specified by the input - * parameters need not - * necessarily cover all elements - * of the matrix. Elements not - * covered remain untouched. - */ -// template -// void copy_from (const ForwardIterator begin, -// const ForwardIterator end); - - /** - * Copy the nonzero entries of a - * full matrix into this - * object. Previous content is - * deleted. Note that the - * underlying sparsity pattern - * must be appropriate to hold - * the nonzero entries of the - * full matrix. - */ -// template -// void copy_from (const FullMatrix &matrix); /** * Add @p matrix scaled by @@ -651,29 +565,6 @@ class SparseMatrixEZ : public Subscriptor number el (const unsigned int i, const unsigned int j) const; - /** - * Return the main diagonal element in - * the @p ith row. This function throws an - * error if the matrix is not square. - * - * This function is considerably - * faster than the operator(), - * since for square matrices, the - * diagonal entry is always the - * first to be stored in each row - * and access therefore does not - * involve searching for the - * right column number. - */ -// number diag_element (const unsigned int i) const; - - /** - * Same as above, but return a - * writeable reference. You're - * sure you know what you do? - */ -// number & diag_element (const unsigned int i); - /** * Matrix-vector multiplication: * let $dst = M*src$ with $M$ @@ -717,66 +608,10 @@ class SparseMatrixEZ : public Subscriptor void Tvmult_add (Vector &dst, const Vector &src) const; - /** - * Return the square of the norm - * of the vector $v$ with respect - * to the norm induced by this - * matrix, - * i.e. $\left(v,Mv\right)$. This - * is useful, e.g. in the finite - * element context, where the - * $L_2$ norm of a function - * equals the matrix norm with - * respect to the mass matrix of - * the vector representing the - * nodal values of the finite - * element function. - * - * Obviously, the matrix needs to - * be square for this operation. - */ -// template -// somenumber matrix_norm_square (const Vector &v) const; - - /** - * Compute the matrix scalar - * product $\left(u,Mv\right)$. - */ -// template -// somenumber matrix_scalar_product (const Vector &u, -// const Vector &v) const; - /** * Frobenius-norm of the matrix. */ number l2_norm () const; - - /** - * Return the l1-norm of the matrix, that is - * $|M|_1=max_{all columns j}\sum_{all - * rows i} |M_ij|$, - * (max. sum of columns). - * This is the - * natural matrix norm that is compatible - * to the l1-norm for vectors, i.e. - * $|Mv|_1\leq |M|_1 |v|_1$. - * (cf. Haemmerlin-Hoffmann : Numerische Mathematik) - */ -// number l1_norm () const; - - /** - * Return the linfty-norm of the - * matrix, that is - * $|M|_infty=max_{all rows i}\sum_{all - * columns j} |M_ij|$, - * (max. sum of rows). - * This is the - * natural matrix norm that is compatible - * to the linfty-norm of vectors, i.e. - * $|Mv|_infty \leq |M|_infty |v|_infty$. - * (cf. Haemmerlin-Hoffmann : Numerische Mathematik) - */ -// number linfty_norm () const; /** * Apply the Jacobi @@ -868,20 +703,6 @@ class SparseMatrixEZ : public Subscriptor */ const_iterator end (const unsigned int r) const; - /** - * Return the number of nonzero - * elements of this - * matrix. - */ -// unsigned int n_nonzero_elements () const; - - /** - * Return the number of actually - * nonzero elements of this - * matrix. - */ -// unsigned int n_actually_nonzero_elements () const; - /** * Print the matrix to the given * stream, using the format @@ -1145,7 +966,7 @@ SparseMatrixEZ::Entry::Entry(unsigned int column, const number& value) : column(column), - value(value) + value(value) {} @@ -1155,7 +976,7 @@ inline SparseMatrixEZ::Entry::Entry() : column(invalid), - value(0) + value(0) {} @@ -1163,7 +984,9 @@ template inline SparseMatrixEZ::RowInfo::RowInfo(unsigned int start) : - start(start), length(0), diagonal(invalid_diagonal) + start(start), + length(0), + diagonal(invalid_diagonal) {} @@ -1431,7 +1254,9 @@ SparseMatrixEZ::allocate (const unsigned int row, for (unsigned int rn=row+1;rn= data.size()) { // Here, appending a block @@ -1440,6 +1265,7 @@ SparseMatrixEZ::allocate (const unsigned int row, data.push_back(Entry()); } } + Entry* entry = &data[i]; // Save original entry Entry temp = *entry; @@ -1453,7 +1279,8 @@ SparseMatrixEZ::allocate (const unsigned int row, ++r.length; if (col == row) r.diagonal = i - r.start; - else if (col::allocate (const unsigned int row, // There should be no invalid // entry below end Assert (data[j].column != Entry::invalid, ExcInternalError()); - Entry temp2 = data[j]; - data[j] = temp; - temp = temp2; + +//TODO[GK]: This could be done more efficiently by moving starting at the top rather than swapping starting at the bottom + std::swap (data[j], temp); } Assert (data[end].column == Entry::invalid, ExcInternalError()); + data[end] = temp; return entry; @@ -1495,9 +1323,7 @@ void SparseMatrixEZ::set (const unsigned int i, { Entry* entry = locate(i,j); if (entry != 0) - { - entry->value = 0.; - } + entry->value = 0.; } else { -- 2.39.5