From e712551f1e46a8bc8f837793f2da87bb2aca03ae Mon Sep 17 00:00:00 2001 From: hartmann Date: Mon, 19 Apr 2004 15:40:32 +0000 Subject: [PATCH] Update references. git-svn-id: https://svn.dealii.org/trunk@9049 0785d39b-7218-0410-832d-ea1e28bc413d --- .../step-14.data/intro.html | 30 ++++++++----------- .../step-14.data/intro.tex | 20 +++++-------- 2 files changed, 21 insertions(+), 29 deletions(-) diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/intro.html b/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/intro.html index e2daa321fd..0b65b4b4dc 100644 --- a/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/intro.html +++ b/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/intro.html @@ -26,7 +26,7 @@ concepts to a large number of other, more complicated equations. For applications to individual types of equations, see also the publications by Becker [6,7], Kanschat [15,11], Suttmeier [19,16,17,18], Bangerth [3,1,4,2], and -Hartmann [12,14,13]. +Hartmann [12,13,14].

The basic idea is the following: in applications, one is not usually @@ -393,7 +393,7 @@ example programs, regarding the mathematical complexity, as well as the simplicity to add extensions. If you use this program as a basis for your own programs, we would kindly like to ask you to state this fact and the name of the author of the example program, Wolfgang Bangerth, in publications that -arise from that, of your program consists in a considerable part of the +arise from that, if your program consists in a considerable part of the example program. @@ -494,31 +494,27 @@ Christian Führer and Guido Kanschat.
Computing, 58(4):317-334, 1997.

-

12 +

12 +
+Ralf Hartmann. +
Adaptive Finite Element Methods for the Compressible Euler Equations. +
PhD thesis, University of Heidelberg, 2002. + +

+

13
Ralf Hartmann and Paul Houston.
Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. -
Preprint 2001-20, (SFB 359), IWR Heidelberg, Mai 2001. -
to appear in SIAM J. Sci. Comp. +
SIAM J. Sci. Comput. 24 (2002), pp. 979-1004.

-

13 +

14
Ralf Hartmann and Paul Houston.
Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. -
Preprint 2001-42, (SFB 359), IWR Heidelberg, Dez 2001. -
submitted. - -

-

14 -
-Paul Houston and Ralf Hartmann. -
Goal-oriented a posteriori error estimation for compressible fluid - flows. -
In Proceedings of ENUMATH 2001, 2001. -
submitted. +
J. Comput. Phys. 183 (2002), pp. 508-532.

15 diff --git a/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/intro.tex b/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/intro.tex index 4241f55074..fef5f0ee7c 100644 --- a/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/intro.tex +++ b/deal.II/doc/tutorial/chapter-2.step-by-step/step-14.data/intro.tex @@ -22,7 +22,7 @@ concepts to a large number of other, more complicated equations. For applications to individual types of equations, see also the publications by Becker \cite{Bec95,Bec98}, Kanschat \cite{Kan96,FK97}, Suttmeier \cite{Sut96,RS97,RS98c,RS99}, Bangerth \cite{BR99b,Ban00w,BR01a,Ban02}, and -Hartmann \cite{HH01,HH01a,HH01b}. +Hartmann \cite{Har02,HH01,HH01b}. The basic idea is the following: in applications, one is not usually interested in the solution per se, but rather in certain aspects of it. For @@ -296,26 +296,22 @@ Christian F{\"u}hrer and Guido Kanschat. \newblock A posteriori error control in radiative transfer. \newblock {\em Computing}, 58(4):317--334, 1997. +\bibitem{Har02} +Ralf Hartmann. +\newblock {\em Adaptive Finite Element Methods for the Compressible Euler Equations}. +\newblock PhD thesis, University of Heidelberg, 2002. + \bibitem{HH01} Ralf Hartmann and Paul Houston. \newblock Adaptive discontinuous {G}alerkin finite element methods for nonlinear hyperbolic conservation laws. -\newblock Preprint 2001-20, (SFB 359), IWR Heidelberg, Mai 2001. -\newblock submitted. +\newblock SIAM J. Sci. Comput. 24 (2002), pp. 979-1004. \bibitem{HH01b} Ralf Hartmann and Paul Houston. \newblock Adaptive discontinuous {G}alerkin finite element methods for the compressible {E}uler equations. -\newblock Preprint 2001-42, (SFB 359), IWR Heidelberg, Dez 2001. -\newblock submitted. - -\bibitem{HH01a} -Paul Houston and Ralf Hartmann. -\newblock Goal--oriented a posteriori error estimation for compressible fluid - flows. -\newblock In {\em Proceedings of ENUMATH 2001}, 2001. -\newblock submitted. +\newblock J. Comput. Phys. 183 (2002), pp. 508-532. \bibitem{Kan96} Guido Kanschat. -- 2.39.5