From ec7f6dd68bca4e14380007ed0f635ddc63dada77 Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Fri, 16 Apr 2004 16:02:42 +0000 Subject: [PATCH] Document one more function. git-svn-id: https://svn.dealii.org/trunk@9026 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-15/step-15.cc | 50 +++++++++++++++++++++++------ 1 file changed, 41 insertions(+), 9 deletions(-) diff --git a/deal.II/examples/step-15/step-15.cc b/deal.II/examples/step-15/step-15.cc index 02248f366b..397394b3a1 100644 --- a/deal.II/examples/step-15/step-15.cc +++ b/deal.II/examples/step-15/step-15.cc @@ -980,13 +980,28 @@ void MinimizationProblem<1>::refine_grid () + // Before going over to the framework + // functions, we still need to look at the + // implementation of the function that + // computes the energy of a nodal vector in + // the functional considered in this example + // program. Its idea is simple: take a nodal + // vector and the ``DoFHandler'' object it is + // living on, then loop over all cells and + // add up the local contributions to the + // energy: template double MinimizationProblem::energy (const DoFHandler &dof_handler, const Vector &function) { - double energy = 0.; - + // First define the quadrature formula and + // a ``FEValues'' object with which to + // compute the values of the input function + // at the quadrature points. Note again + // that the integrand is a polynomial of + // degree six, so a 4-point Gauss formula + // is appropriate: QGauss4 quadrature_formula; FEValues fe_values (dof_handler.get_fe(), quadrature_formula, UpdateFlags(update_values | @@ -996,31 +1011,48 @@ MinimizationProblem::energy (const DoFHandler &dof_handler, const unsigned int n_q_points = quadrature_formula.n_quadrature_points; + // Then, just as when we integrated the + // linear system, we need two variables + // that will hold the values and gradients + // of the given function at the quadrature + // points: std::vector local_solution_values (n_q_points); std::vector > local_solution_grads (n_q_points); - + + // With this, define an energy variable, + // and loop over all the cells: + double energy = 0.; + typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), endc = dof_handler.end(); for (; cell!=endc; ++cell) { + // On each cell, initialize the + // ``FEValues'' object, and extract + // values and gradients of the given + // function: fe_values.reinit (cell); fe_values.get_function_values (function, local_solution_values); fe_values.get_function_grads (function, local_solution_grads); - + + // Then loop over all quadrature points + // on this cell, and add up the + // contribution of each to the global + // energy: for (unsigned int q_point=0; q_point