From ec8c4d70811bac178567e8f58237eab6a3d1bce8 Mon Sep 17 00:00:00 2001 From: mcbride Date: Tue, 28 Feb 2012 12:35:45 +0000 Subject: [PATCH] step:44 minor changes to code and results.dox git-svn-id: https://svn.dealii.org/trunk@25185 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-44/doc/results.dox | 2 +- deal.II/examples/step-44/step-44.cc | 31 ++++++++++++------------ 2 files changed, 16 insertions(+), 17 deletions(-) diff --git a/deal.II/examples/step-44/doc/results.dox b/deal.II/examples/step-44/doc/results.dox index 7726047dec..648afdaf71 100644 --- a/deal.II/examples/step-44/doc/results.dox +++ b/deal.II/examples/step-44/doc/results.dox @@ -128,7 +128,7 @@ The pressure solution is very coarse and has large jumps between adjacent cells. It is clear that the volume nearest to the applied traction undergoes compression while the outer extents of the domain are in a state of expansion. The dilatation solution field and pressure field are clearly linked, -with positive dilatation indicating regions of positive hyprodstatic pressure and negative showing regions placed in compression. +with positive dilatation indicating regions of positive pressure and negative showing regions placed in compression. As discussed in the Introduction, a compressive pressure has a negative sign while an expansive pressure takes a positive sign. This stems from the definition of the volumetric strain energy function diff --git a/deal.II/examples/step-44/step-44.cc b/deal.II/examples/step-44/step-44.cc index 6473b4a820..4832daaa7b 100644 --- a/deal.II/examples/step-44/step-44.cc +++ b/deal.II/examples/step-44/step-44.cc @@ -561,7 +561,7 @@ namespace Step44 template const SymmetricTensor<4, dim> - StandardTensors::dev_P = (II - (1.0 / dim) * IxI); + StandardTensors::dev_P = deviator_tensor(); } // @sect3{Time class} @@ -706,7 +706,7 @@ namespace Step44 } // Derivative of the volumetric free - // energy wrt $\widetilde{J}$ return + // energy with respect to $\widetilde{J}$ return // $\frac{\partial // \Psi_{\text{vol}}(\widetilde{J})}{\partial // \widetilde{J}}$ @@ -925,15 +925,15 @@ namespace Step44 // and the first and second derivatives // of the volumetric free energy. // - // Finally, we store the inverse of + // We also store the inverse of // the deformation gradient since // we frequently use it: + F_inv = invert(F); tau = material->get_tau(); - Jc = material->get_Jc(); dPsi_vol_dJ = material->get_dPsi_vol_dJ(); d2Psi_vol_dJ2 = material->get_d2Psi_vol_dJ2(); - F_inv = invert(F); + } // We offer an interface to retrieve @@ -949,7 +949,7 @@ namespace Step44 return material->get_det_F(); } - Tensor<2, dim> get_F_inv() const + const Tensor<2, dim>& get_F_inv() const { return F_inv; } @@ -963,7 +963,7 @@ namespace Step44 return material->get_p_tilde(); } - SymmetricTensor<2, dim> get_tau() const + const SymmetricTensor<2, dim>& get_tau() const { return tau; } @@ -979,7 +979,7 @@ namespace Step44 } // and finally the tangent - SymmetricTensor<4, dim> get_Jc() const + const SymmetricTensor<4, dim>& get_Jc() const { return Jc; } @@ -1678,7 +1678,7 @@ namespace Step44 // this operation (we could, in principle simply create a new task using // Threads::new_task for each cell) but there is not much harm done to doing // it this way anyway. -// Furthermore, should their be different material models associated with a +// Furthermore, should there be different material models associated with a // quadrature point, requiring varying levels of computational expense, then // the method used here could be advantageous. template @@ -1803,7 +1803,7 @@ namespace Step44 block_component[p_component] = p_dof; // Pressure block_component[J_component] = J_dof; // Dilatation - // DOF handler is then initialised and we + // The DOF handler is then initialised and we // renumber the grid in an efficient // manner. We also record the number of // DOF's per block. @@ -1840,8 +1840,6 @@ namespace Step44 csp.block(J_dof, J_dof).reinit(n_dofs_J, n_dofs_J); csp.collect_sizes(); - // In order to perform the static condensation efficiently, - // we choose to exploit the symmetry of the the system matrix. // The global system matrix initially has the following structure // @f{align*} // \underbrace{\begin{bmatrix} @@ -3025,7 +3023,8 @@ namespace Step44 // preconditioner as it appears to // provide the fastest solver // convergence characteristics for this - // problem. However, for multicore + // problem on a single-thread machine. + // However, for multicore // computing, the Jacobi preconditioner // which is multithreaded may converge // quicker for larger linear systems. @@ -3293,9 +3292,9 @@ namespace Step44 // $ // and // $ - // \overline{\mathbf{\mathsf{K}}} = - // \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}} - // \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1} + // \overline{\mathbf{\mathsf{k}}} = + // \mathbf{\mathsf{k}}_{\widetilde{J}\widetilde{p}}^{-1} \mathbf{\mathsf{k}}_{\widetilde{J}\widetilde{J}} + // \mathbf{\mathsf{k}}_{\widetilde{p}\widetilde{J}}^{-1} // $. // // At this point, we need to take note of -- 2.39.5