From f3dc4cd4347ca7b35a1fead12cf332b73bc3fe2e Mon Sep 17 00:00:00 2001 From: Timo Heister Date: Wed, 19 Oct 2016 15:24:26 -0400 Subject: [PATCH] fix doxygen errors --- doc/news/changes.h | 2 +- include/deal.II/base/quadrature_point_data.h | 4 +-- include/deal.II/fe/fe_series.h | 30 ++++++++++---------- source/dofs/dof_tools.cc | 2 +- 4 files changed, 19 insertions(+), 19 deletions(-) diff --git a/doc/news/changes.h b/doc/news/changes.h index f14bfe495a..d21ed88746 100644 --- a/doc/news/changes.h +++ b/doc/news/changes.h @@ -443,7 +443,7 @@ inconvenience this causes.
  • Fixed: EmbeddedRungeKutta methods now correctly increase delta_t_guess when the error is below coarsen_tol. -
    +
    (Vaibhav Palkar, Bruno Turcksin, 2016/09/16)
  • diff --git a/include/deal.II/base/quadrature_point_data.h b/include/deal.II/base/quadrature_point_data.h index e383115ccb..9542728d6e 100644 --- a/include/deal.II/base/quadrature_point_data.h +++ b/include/deal.II/base/quadrature_point_data.h @@ -231,10 +231,10 @@ namespace parallel * automatic shipping of information between different processors. * * To that end, the constructor of the class is provided with three main objects: - * scalar FiniteElement @projection_fe, @p mass_quadrature and @p data_quadrature + * scalar FiniteElement @p projection_fe, @p mass_quadrature and @p data_quadrature * Quadrature rules. * First, the data located at @p data_quadrature of each cell is L2-projected - * to the continuous space defined by a single FiniteElement @projection_fe . + * to the continuous space defined by a single FiniteElement @p projection_fe . * This is achieved using FETools::compute_projection_from_quadrature_points_matrix(). * In doing so the mass matrix of this element is required, which will be calculated * with the @p mass_quadrature rule . Should the cell now belong to another processor, diff --git a/include/deal.II/fe/fe_series.h b/include/deal.II/fe/fe_series.h index fdb4509aa6..88102f5239 100644 --- a/include/deal.II/fe/fe_series.h +++ b/include/deal.II/fe/fe_series.h @@ -56,12 +56,12 @@ namespace FESeries * A class to calculate expansion of a scalar FE field into Fourier series * on a reference element. The exponential form of the Fourier series is * based on completeness and Hermitian orthogonality of the set of exponential - * functions \f$ \phi_{\bf k}({\bf x}) = \exp(2 \pi i\, {\bf k} \cdot {\bf x})\f$. + * functions $ \phi_{\bf k}({\bf x}) = \exp(2 \pi i\, {\bf k} \cdot {\bf x})$. * For example in 1D the L2-orthogonality condition reads * @f[ * \int_0^1 \phi_k(x) \phi_l^\ast(x) dx=\delta_{kl}. * @f] - * Note that \f$ \phi_{\bf k} = \phi_{-\bf k}^\ast \f$. + * Note that $ \phi_{\bf k} = \phi_{-\bf k}^\ast $. * * The arbitrary scalar FE field on the reference element can be expanded in * the complete orthogonal exponential basis as @@ -75,11 +75,11 @@ namespace FESeries * \int_{[0,1]^d} u({\bf x}) \phi_{\bf k}^\ast ({\bf x}) d{\bf x}\,. * @f] * It is this complex-valued expansion coefficients, that are calculated by - * this class. Note that \f$ u({\bf x}) = \sum_i u_i N_i({\bf x})\f$, - * where \f$ N_i({\bf x}) \f$ are real-valued FiniteElement shape functions. - * Consequently \f$ c_{\bf k} \equiv c_{-\bf k}^\ast \f$ and - * we only need to compute \f$ c_{\bf k} \f$ for positive indices - * \f$ \bf k \f$ . + * this class. Note that $ u({\bf x}) = \sum_i u_i N_i({\bf x})$, + * where $ N_i({\bf x}) $ are real-valued FiniteElement shape functions. + * Consequently $ c_{\bf k} \equiv c_{-\bf k}^\ast $ and + * we only need to compute $ c_{\bf k} $ for positive indices + * $ \bf k $ . * * @author Denis Davydov, 2016. */ @@ -125,7 +125,7 @@ namespace FESeries void ensure_existence(const unsigned int fe_index); /** - * Angular frequencies \f$ 2 \pi {\bf k} \f$ . + * Angular frequencies $ 2 \pi {\bf k} $ . */ Table > k_vectors; @@ -154,20 +154,20 @@ namespace FESeries * @f[ * P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n}[x^2-1]^n. * @f] - * These polynomials are orthogonal with respect to the \f$ L^2 \f$ inner - * product on the interval \f$ [-1;1] \f$ + * These polynomials are orthogonal with respect to the $ L^2 $ inner + * product on the interval $ [-1;1] $ * @f[ * \int_{-1}^1 P_m(x) P_n(x) = \frac{2}{2n + 1} \delta_{mn} * @f] * and are complete. - * A family of \f$ L^2 \f$-orthogonal polynomials on \f$ [0;1] \f$ can be + * A family of $ L^2 $-orthogonal polynomials on $ [0;1] $ can be * constructed via * @f[ * \widetilde P_m = \sqrt{2} P_m(2x-1). * @f] * * - * An arbitrary scalar FE field on the reference element \f$ [0;1] \f$ can be + * An arbitrary scalar FE field on the reference element $ [0;1] $ can be * expanded in the complete orthogonal basis as * @f[ * u(x) @@ -178,9 +178,9 @@ namespace FESeries * c_m = \frac{2m+1}{2} * \int_0^1 u(x) \widetilde P_m(x) dx . * @f] - * This class calculates coefficients \f$ c_{\bf k} \f$ using - * \f$ dim \f$-dimensional Legendre polynomials constructed from - * \f$ \widetilde P_m(x) \f$ using tensor product rule. + * This class calculates coefficients $ c_{\bf k} $ using + * $ dim $-dimensional Legendre polynomials constructed from + * $ \widetilde P_m(x) $ using tensor product rule. * * @author Denis Davydov, 2016. */ diff --git a/source/dofs/dof_tools.cc b/source/dofs/dof_tools.cc index bc666ba5c9..090ca73cf8 100644 --- a/source/dofs/dof_tools.cc +++ b/source/dofs/dof_tools.cc @@ -70,7 +70,7 @@ namespace DoFTools /** * Comparison operator. * - * Return true if @lhs is considered less than @rhs. + * Return true if @p lhs is considered less than @p rhs. */ bool operator() (const Point &lhs, const Point &rhs) const -- 2.39.5