From f42be1a3d4fb4bbdf491c94aba14c43c6fb02db8 Mon Sep 17 00:00:00 2001 From: bangerth Date: Wed, 20 Aug 2008 13:13:36 +0000 Subject: [PATCH] A few more minor cleanups. git-svn-id: https://svn.dealii.org/trunk@16611 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-31/step-31.cc | 53 +++++++++++++++-------------- 1 file changed, 28 insertions(+), 25 deletions(-) diff --git a/deal.II/examples/step-31/step-31.cc b/deal.II/examples/step-31/step-31.cc index b53d414472..a8911193d5 100644 --- a/deal.II/examples/step-31/step-31.cc +++ b/deal.II/examples/step-31/step-31.cc @@ -127,7 +127,7 @@ class PreconditionerTrilinosAmg : public Subscriptor private: - boost::shared_ptr ml_precond; + boost::shared_ptr multigrid_operator; Epetra_SerialComm communicator; boost::shared_ptr Map; @@ -148,15 +148,18 @@ void PreconditionerTrilinosAmg::initialize ( const double drop_tolerance ) { - const unsigned int n_u = matrix.m(); + Assert (drop_tolerance >= 0, + ExcMessage ("Drop tolerance must be a non-negative number.")); + + const unsigned int n_rows = matrix.m(); const SparsityPattern *sparsity_pattern = &(matrix.get_sparsity_pattern()); // Init Epetra Matrix, avoid // storing the nonzero elements. { - Map.reset (new Epetra_Map(n_u, 0, communicator)); + Map.reset (new Epetra_Map(n_rows, 0, communicator)); - std::vector row_lengths (n_u); + std::vector row_lengths (n_rows); for (SparseMatrix::const_iterator p = matrix.begin(); p != matrix.end(); ++p) if (std::abs(p->value()) > drop_tolerance) @@ -170,7 +173,7 @@ void PreconditionerTrilinosAmg::initialize ( std::vector values(max_nonzero_entries, 0); std::vector row_indices(max_nonzero_entries); - for (unsigned int row=0; row::const_iterator p = matrix.begin(row); @@ -194,7 +197,7 @@ void PreconditionerTrilinosAmg::initialize ( } // Build the AMG preconditioner. - Teuchos::ParameterList MLList; + Teuchos::ParameterList parameter_list; // The implementation is able // to distinguish between @@ -210,41 +213,41 @@ void PreconditionerTrilinosAmg::initialize ( // than Gauss-Seidel (SSOR). if (elliptic) { - ML_Epetra::SetDefaults("SA",MLList); - MLList.set("smoother: type", "Chebyshev"); - MLList.set("smoother: sweeps", 4); + ML_Epetra::SetDefaults("SA",parameter_list); + parameter_list.set("smoother: type", "Chebyshev"); + parameter_list.set("smoother: sweeps", 4); } else { - ML_Epetra::SetDefaults("NSSA",MLList); - MLList.set("aggregation: type", "Uncoupled"); - MLList.set("aggregation: block scaling", true); + ML_Epetra::SetDefaults("NSSA",parameter_list); + parameter_list.set("aggregation: type", "Uncoupled"); + parameter_list.set("aggregation: block scaling", true); } if (output_details) - MLList.set("ML output", 10); + parameter_list.set("ML output", 10); else - MLList.set("ML output", 0); + parameter_list.set("ML output", 0); if (higher_order_elements) - MLList.set("aggregation: type", "MIS"); + parameter_list.set("aggregation: type", "MIS"); - Assert (n_u * null_space_dimension == null_space.size(), - ExcDimensionMismatch(n_u * null_space_dimension, + Assert (n_rows * null_space_dimension == null_space.size(), + ExcDimensionMismatch(n_rows * null_space_dimension, null_space.size())); if (null_space_dimension > 1) { - MLList.set("null space: type", "pre-computed"); - MLList.set("null space: dimension", int(null_space_dimension)); - MLList.set("null space: vectors", (double *)&null_space[0]); + parameter_list.set("null space: type", "pre-computed"); + parameter_list.set("null space: dimension", int(null_space_dimension)); + parameter_list.set("null space: vectors", (double *)&null_space[0]); } - ml_precond = boost::shared_ptr - (new ML_Epetra::MultiLevelPreconditioner(*Matrix, MLList, true)); + multigrid_operator = boost::shared_ptr + (new ML_Epetra::MultiLevelPreconditioner(*Matrix, parameter_list, true)); if (output_details) - ml_precond->PrintUnused(0); + multigrid_operator->PrintUnused(0); } // For the implementation of the @@ -270,11 +273,11 @@ void PreconditionerTrilinosAmg::vmult (Vector &dst, Epetra_Vector LHS (View, *Map, dst.begin()); Epetra_Vector RHS (View, *Map, const_cast(src.begin())); - int res = ml_precond->ApplyInverse (RHS, LHS); + const int res = multigrid_operator->ApplyInverse (RHS, LHS); Assert (res == 0, ExcMessage ("Trilinos AMG MultiLevel preconditioner returned " - "errorneously!")); + "with an error!")); } -- 2.39.5