From f49a08790127891c2328a220d11b56fe60ea0060 Mon Sep 17 00:00:00 2001 From: bangerth Date: Tue, 28 Oct 2008 19:26:58 +0000 Subject: [PATCH] Fix up a number of other issues and finish reading through the document. git-svn-id: https://svn.dealii.org/trunk@17375 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-31/step-31.cc | 158 ++++++++++++++++------------ 1 file changed, 91 insertions(+), 67 deletions(-) diff --git a/deal.II/examples/step-31/step-31.cc b/deal.II/examples/step-31/step-31.cc index 3724149038..bcf43f4b44 100644 --- a/deal.II/examples/step-31/step-31.cc +++ b/deal.II/examples/step-31/step-31.cc @@ -2172,7 +2172,7 @@ void BoussinesqFlowProblem::assemble_temperature_system () // @sect4{BoussinesqFlowProblem::solve} // // This function solves the linear systems - // of equations. Following to the + // of equations. Following the // introduction, we start with the Stokes // system, where we need to generate our // block Schur preconditioner. Since all @@ -2227,19 +2227,20 @@ void BoussinesqFlowProblem::solve () std::cout << " Solving..." << std::endl; { - LinearSolvers::InverseMatrix + const LinearSolvers::InverseMatrix mp_inverse (stokes_preconditioner_matrix.block(1,1), *Mp_preconditioner); - LinearSolvers::BlockSchurPreconditioner + const LinearSolvers::BlockSchurPreconditioner preconditioner (stokes_matrix, mp_inverse, *Amg_preconditioner); SolverControl solver_control (stokes_matrix.m(), 1e-6*stokes_rhs.l2_norm()); - SolverGMRES gmres(solver_control, - SolverGMRES::AdditionalData(100)); + SolverGMRES + gmres (solver_control, + SolverGMRES::AdditionalData(100)); gmres.solve(stokes_matrix, stokes_solution, stokes_rhs, preconditioner); @@ -2280,16 +2281,16 @@ void BoussinesqFlowProblem::solve () // $[1,1+k_nh^{-2}]$ (up to // constants). This matrix is only // moderately ill conditioned even for - // small mesh sizes and we get a reasonable + // small mesh sizes and we get a reasonably // good preconditioner by simple means, for - // example SSOR. We set the relaxation - // parameter to 1.2. As a solver, we choose + // example SSOR with a relaxation + // parameter of 1.2. As a solver, we choose // the conjugate gradient method CG. As // before, we tell the solver to use // Trilinos vectors via the template // argument - // TrilinosWrappers::Vector at - // construction. Finally, we solve, + // TrilinosWrappers::Vector. + // Finally, we solve, // distribute the hanging node constraints // and write out the number of iterations. old_time_step = time_step; @@ -2297,6 +2298,9 @@ void BoussinesqFlowProblem::solve () temperature_degree * GridTools::minimal_cell_diameter(triangulation) / std::max (get_maximal_velocity(), .01); + + std::cout << " " << "Time step = " << time_step + << std::endl; temperature_solution = old_temperature_solution; @@ -2607,32 +2611,47 @@ void BoussinesqFlowProblem::refine_mesh (const unsigned int max_grid_level) cell != triangulation.end(); ++cell) cell->clear_refine_flag (); - // Before we can apply the mesh - // refinement, we have to prepare the - // solution vectors that should be - // transfered to the new grid (we will - // lose the old grid once we have done - // the refinement). What we definetely + // As part of mesh refinement we + // need to transfer the solution + // vectors from the old mesh to the + // new one. To this end we use the + // SolutionTransfer class and we + // have to prepare the solution + // vectors that should be + // transfered to the new grid (we + // will lose the old grid once we + // have done the refinement so the + // transfer has to happen + // concurrently with + // refinement). What we definetely // need are the current and the old // temperature (BDF-2 time stepping - // requires two old solutions). Since the - // SolutionTransfer objects only support - // to transfer one object per dof - // handler, we need to collect the two - // temperature solutions in one data - // structure. Moreover, we choose to - // transfer the Stokes solution, too. The - // reason for doing so is that the Stokes - // solution will not change dramatically - // from step to step, so we get a good - // initial guess for the linear solver - // when we reuse old data, which reduces - // the number of needed solver - // iterations. Next, we initialize the - // SolutionTransfer objects, by attaching - // them to the old dof handler. With this - // at place, we can prepare the - // triangulation and the data vectors for + // requires two old + // solutions). Since the + // SolutionTransfer objects only + // support to transfer one object + // per dof handler, we need to + // collect the two temperature + // solutions in one data + // structure. Moreover, we choose + // to transfer the Stokes solution, + // too. The reason for doing so is + // that the Stokes solution will + // not change dramatically from + // step to step, so we get a good + // initial guess for the linear + // solver when we reuse old data, + // which reduces the number of + // needed solver iterations. + // + // Consequently, we initialize two + // SolutionTransfer objects for the + // Stokes and temperature + // DoFHandler objects, by attaching + // them to the old dof + // handlers. With this at place, we + // can prepare the triangulation + // and the data vectors for // refinement (in this order). std::vector x_temperature (2); x_temperature[0].reinit (temperature_solution); @@ -2662,16 +2681,17 @@ void BoussinesqFlowProblem::refine_mesh (const unsigned int max_grid_level) // solutions between the grids. We // create another copy of temporary // vectors for temperature (now - // according to the new grid), and - // let the interpolate function do - // the job. Then, the new vector is - // written into the respective - // vector. For the Stokes vector, - // everything is just the same - // – except that we do not - // need another temporary vector - // since we just interpolate a - // single vector. In the end, we + // corresponding to the new grid), + // and let the interpolate function + // do the job. Then, the resulting + // array of vectors is written into + // the respective vector member + // variables. For the Stokes + // vector, everything is just the + // same – except that we do + // not need another temporary + // vector since we just interpolate + // a single vector. In the end, we // have to tell the program that // the matrices and preconditioners // need to be regenerated, since @@ -2699,24 +2719,30 @@ void BoussinesqFlowProblem::refine_mesh (const unsigned int max_grid_level) // @sect4{BoussinesqFlowProblem::run} // // This function performs all the - // essential steps in the - // Boussinesq program. It starts by - // setting up a grid (depending on - // the spatial dimension, we choose - // some different level of initial - // refinement and additional - // adative refinement steps, and - // then create a cube in - // dim dimensions and set - // up the dofs for the first - // time. Since we want to start the - // time stepping already with an - // adaptively refined grid, we - // perform some pre-refinement - // steps, consisting of all - // assembly, solution and - // refinement, but without actually - // advancing in time. + // essential steps in the Boussinesq + // program. It starts by setting up a + // grid (depending on the spatial + // dimension, we choose some + // different level of initial + // refinement and additional adaptive + // refinement steps, and then create + // a cube in dim + // dimensions and set up the dofs for + // the first time. Since we want to + // start the time stepping already + // with an adaptively refined grid, + // we perform some pre-refinement + // steps, consisting of all assembly, + // solution and refinement, but + // without actually advancing in + // time. Rather, we use the vilified + // goto statement to + // jump out of the time loop right + // after mesh refinement to start all + // over again on the new mesh + // beginning at the + // start_time_iteration + // label. // // Before we start, we project the // initial values to the grid and @@ -2756,7 +2782,6 @@ void BoussinesqFlowProblem::run () { std::cout << "Timestep " << timestep_number << ": t=" << time - << ", dt=" << time_step << std::endl; // The first steps in the time loop @@ -2767,8 +2792,7 @@ void BoussinesqFlowProblem::run () // preconditioner do actually only // change in case we've remeshed // before), and then do the - // solve. The solution is then - // written to screen. Before going on + // solve. Before going on // with the next time step, we have // to check whether we should first // finish the pre-refinement steps or -- 2.39.5