From fa0b528d796700b212563ee54a387b27dd45f6aa Mon Sep 17 00:00:00 2001 From: Wolfgang Bangerth Date: Thu, 28 Mar 2002 08:06:46 +0000 Subject: [PATCH] Add step-13 to have in CVS. Not yet finished, though. git-svn-id: https://svn.dealii.org/trunk@5628 0785d39b-7218-0410-832d-ea1e28bc413d --- deal.II/examples/step-13/Makefile | 159 +++ deal.II/examples/step-13/step-13.cc | 1434 +++++++++++++++++++++++++++ 2 files changed, 1593 insertions(+) create mode 100644 deal.II/examples/step-13/Makefile create mode 100644 deal.II/examples/step-13/step-13.cc diff --git a/deal.II/examples/step-13/Makefile b/deal.II/examples/step-13/Makefile new file mode 100644 index 0000000000..c02ef0f148 --- /dev/null +++ b/deal.II/examples/step-13/Makefile @@ -0,0 +1,159 @@ +# $Id$ + + +# For the small projects Makefile, you basically need to fill in only +# four fields. +# +# The first is the name of the application. It is assumed that the +# application name is the same as the base file name of the single C++ +# file from which the application is generated. +target = $(basename $(shell echo step-*.cc)) + +# The second field determines whether you want to run your program in +# debug or optimized mode. The latter is significantly faster, but no +# run-time checking of parameters and internal states is performed, so +# you should set this value to `on' while you develop your program, +# and to `off' when running production computations. +debug-mode = on + + +# As third field, we need to give the path to the top-level deal.II +# directory. You need to adjust this to your needs. Since this path is +# probably the most often needed one in the Makefile internals, it is +# designated by a single-character variable, since that can be +# reference using $D only, i.e. without the parentheses that are +# required for most other parameters, as e.g. in $(target). +D = ../../ + + +# The last field specifies the names of data and other files that +# shall be deleted when calling `make clean'. Object and backup files, +# executables and the like are removed anyway. Here, we give a list of +# files in the various output formats that deal.II supports. +clean-up-files = *gmv *gnuplot *gpl *eps *pov + + + + +# +# +# Usually, you will not need to change something beyond this point. +# +# +# The next statement tell the `make' program where to find the +# deal.II top level directory and to include the file with the global +# settings +include $D/common/Make.global_options + + +# Since the whole project consists of only one file, we need not +# consider difficult dependencies. We only have to declare the +# libraries which we want to link to the object file, and there need +# to be two sets of libraries: one for the debug mode version of the +# application and one for the optimized mode. Here we have selected +# the versions for 2d. Note that the order in which the libraries are +# given here is important and that your applications won't link +# properly if they are given in another order. +# +# You may need to augment the lists of libraries when compiling your +# program for other dimensions, or when using third party libraries +libs.g = $(lib-deal2-2d.g) \ + $(lib-lac.g) \ + $(lib-base.g) +libs.o = $(lib-deal2-2d.o) \ + $(lib-lac.o) \ + $(lib-base.o) + + +# We now use the variable defined above which switch between debug and +# optimized mode to select the correct compiler flags and the set of +# libraries to link with. Included in the list of libraries is the +# name of the object file which we will produce from the single C++ +# file. Note that by default we use the extension .go for object files +# compiled in debug mode and .o for object files in optimized mode. +ifeq ($(debug-mode),on) + libraries = $(target).go $(libs.g) + flags = $(CXXFLAGS.g) +else + libraries = $(target).o $(libs.o) + flags = $(CXXFLAGS.o) +endif + + +# Now comes the first production rule: how to link the single object +# file produced from the single C++ file into the executable. Since +# this is the first rule in the Makefile, it is the one `make' selects +# if you call it without arguments. +$(target) : $(libraries) + @echo ============================ Linking $@ + @$(CXX) -o $@ $^ $(LIBS) $(LDFLAGS) + + +# To make running the application somewhat independent of the actual +# program name, we usually declare a rule `run' which simply runs the +# program. You can then run it by typing `make run'. This is also +# useful if you want to call the executable with arguments which do +# not change frequently. You may then want to add them to the +# following rule: +run: $(target) + @echo ============================ Running $< + @./$(target) + + +# As a last rule to the `make' program, we define what to do when +# cleaning up a directory. This usually involves deleting object files +# and other automatically created files such as the executable itself, +# backup files, and data files. Since the latter are not usually quite +# diverse, you needed to declare them at the top of this file. +clean: + -rm -f *.o *.go *~ Makefile.dep $(target) $(clean-up-files) + + +# Since we have not yet stated how to make an object file from a C++ +# file, we should do so now. Since the many flags passed to the +# compiler are usually not of much interest, we suppress the actual +# command line using the `at' sign in the first column of the rules +# and write the string indicating what we do instead. +%.go : %.cc + @echo ==============debug========= $( Makefile.dep + +# To make the dependencies known to `make', we finally have to include +# them: +include Makefile.dep + + diff --git a/deal.II/examples/step-13/step-13.cc b/deal.II/examples/step-13/step-13.cc new file mode 100644 index 0000000000..70bc958af4 --- /dev/null +++ b/deal.II/examples/step-13/step-13.cc @@ -0,0 +1,1434 @@ +/* $Id$ */ +/* Author: Wolfgang Bangerth, University of Heidelberg, 2001, 2002 */ + +/* $Id$ */ +/* Version: $Name$ */ +/* */ +/* Copyright (C) 2001, 2002 by the deal.II authors */ +/* */ +/* This file is subject to QPL and may not be distributed */ +/* without copyright and license information. Please refer */ +/* to the file deal.II/doc/license.html for the text and */ +/* further information on this license. */ + + + // As in all programs, we start with + // a list of include files from the + // library, and as usual they are in + // the standard order which is + // ``base'' - ``lac'' - ``grid'' - + // ``dofs'' - ``fe'' - ``numerics'' + // (as each of these categories + // roughly builds upon previous + // ones), then C++ standard headers: +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + // Now for the C++ standard headers: +#include +#include + + // Just as in the step-5 example + // program (see there for a lengthy + // discussion of the subject), we + // have to work around some + // historical confusion with the + // files declaring the stringstream + // classes: +#ifdef HAVE_STD_STRINGSTREAM +# include +#else +# include +#endif + + + // @sect3{Evaluation of the solution} + + // As for the program itself, we + // first define classes that evaluate + // the solutions of a Laplace + // equation. In fact, they can + // evaluate every kind of solution, + // as long as it is described by a + // ``DoFHandler'' object, and a + // solution vector. We define them + // here first, even before the + // classes that actually generate the + // solution to be evaluated, since we + // need to declare an abstract base + // class that the solver classes can + // refer to. + // + // From an abstract point of view, we + // declare an abstract base class + // that provides and evaluation + // operator ``operator()'' which will + // do the evaluation of the solution + // (whatever derived classes might + // consider an ``evaluation''). Since + // this is the only real function of + // this base class (except for some + // bookkeeping machinery), one + // usually terms such a class that + // only has an ``operator()'' a + // ``functor'' in C++ terminology, + // since it is used just like a + // function object. + // + // Objects of this functor type will + // then later be passed to the solver + // object, which applies it to the + // solution just computed. The + // evaluation objects may then + // extract any quantity they like + // from the solution. The advantage + // of putting these evaluation + // functions into a separate + // hierarchy of classes is that by + // design they cannot use the + // internals of the solver object and + // are therefore independent of + // changes to the way the solver + // works. Furthermore, it is trivial + // to write another evaluation class + // without modifying the solver + // class, which speeds up programming + // (not being able to use internals + // of another class also means that + // you do not have to worry about + // them -- programming evaluators is + // usually a rather quickly done + // task), as well as compilation (if + // solver and evaluation classes are + // put into different files: the + // solver only needs to see the + // declaration of the abstract base + // class, and therefore does not need + // to be recompiled upon addition of + // a new evaluation class, or + // modification of an old one). + // On a related note, you can reuse + // the evaluation classes for other + // projects, solving different + // equations. + // + // In order to improve separation of + // code into different modules, we + // put the evaluation classes into a + // namespace of their own. This makes + // it easier to actually solver + // different equations in the same + // program, by assembling it from + // existing building blocks. The + // reason for this is that classes + // for similar purposes tend to have + // the same name, although they were + // developed in different + // contexts. In order to be able to + // use them together in one program, + // it is necessary that they are + // placed in different + // namespaces. This we do here: +namespace Evaluation +{ + + // Now for the abstract base class + // of evaluation classes: its main + // purpose is to declare a pure + // virtual function ``operator()'' + // taking a ``DoFHandler'' object, + // and the solution vector. In + // order to be able to use pointers + // to this base class only, it also + // has to declare a virtual + // destructor, which however does + // nothing. Besides this, it only + // provides for a little bit of + // bookkeeping: since we usually + // want to evaluate solutions on + // subsequent refinement levels, we + // store the number of the present + // refinement cycle, and provide a + // function to change this number. + template + class EvaluationBase + { + public: + virtual ~EvaluationBase (); + + void set_refinement_cycle (const unsigned int refinement_cycle); + + virtual void operator () (const DoFHandler &dof_handler, + const Vector &solution) const = 0; + protected: + unsigned int refinement_cycle; + }; + + + // After the declaration has been + // discussed above, the + // implementation is rather + // straightforward: + template + EvaluationBase::~EvaluationBase () + {}; + + + + template + void + EvaluationBase::set_refinement_cycle (const unsigned int step) + { + refinement_cycle = step; + }; + + + // @sect4{Point evaluation} + + // The next thing is to implement + // actual evaluation classes. As + // noted in the introduction, we'd + // like to extract a point value + // from the solution, so the first + // class does this in its + // ``operator()''. The actual point + // is given to this class through + // the constructor, as well as a + // table object into which it will + // put its findings. + // + // Finding out the value of a + // finite element field at an + // arbitrary point is rather + // difficult, if we cannot rely on + // knowing the actual finite + // element used, since then we + // cannot, for example, interpolate + // between nodes. For simplicity, + // we therefore assume here that + // the point at which we want to + // evaluate the field is actually a + // node. If, in the process of + // evaluating the solution, we find + // that we did not encounter this + // point upon looping over all + // vertices, we then have to throw + // an exception in order to signal + // to the calling functions that + // something has gone wrong, rather + // than silently ignore this error. + // + // In the step-9 example program, + // we have already seen how such an + // exception class can be declared, + // using the ``DeclExceptionN'' + // macros. We use this mechanism + // here again. + // + // From this, the actual + // declaration of this class should + // be evident. Note that of course + // even if we do not list a + // destructor explicitely, an + // implicit destructor is generated + // from the compiler, and it is + // virtual just as the one of the + // base class. + template + class PointValueEvaluation : public EvaluationBase + { + public: + PointValueEvaluation (const Point &evaluation_point, + TableHandler &results_table); + + virtual void operator () (const DoFHandler &dof_handler, + const Vector &solution) const; + + DeclException1 (ExcEvaluationPointNotFound, + Point, + << "The evaluation point " << arg1 + << " was not found among the vertices of the present grid."); + private: + const Point evaluation_point; + TableHandler &results_table; + }; + + + // As for the definition, the + // constructor is trivial, just + // taking data and storing it in + // object-local ones: + template + PointValueEvaluation:: + PointValueEvaluation (const Point &evaluation_point, + TableHandler &results_table) + : + evaluation_point (evaluation_point), + results_table (results_table) + {}; + + + + // Now for the function that is + // mainly of interest in this + // class, the computation of the + // point value: + template + void + PointValueEvaluation:: + operator () (const DoFHandler &dof_handler, + const Vector &solution) const + { + // First allocate a variable that + // will hold the point + // value. Initialize it with a + // value that is clearly bogus, + // so that if we fail to set it + // to a reasonable value, we will + // note at once. This may not be + // necessary in a function as + // small as this one, since we + // can easily see all possible + // paths of execution here, but + // it proved to be helpful for + // more complex cases, and so we + // employ this strategy here as + // well. + double point_value = 1e20; + + // Then loop over all cells and + // all their vertices, and check + // whether a vertex matches the + // evaluation point. If this is + // the case, then extract the + // point value, set a flag that + // we have found the point of + // interest, and exit the loop. + typename DoFHandler::active_cell_iterator + cell = dof_handler.begin_active(), + endc = dof_handler.end(); + bool evaluation_point_found = false; + for (; (cell!=endc) && !evaluation_point_found; ++cell) + for (unsigned int vertex=0; + vertex::vertices_per_cell; + ++vertex) + if (cell->vertex(vertex) == evaluation_point) + { + // In order to extract + // the point value from + // the global solution + // vector, pick that + // component that belongs + // to the vertex of + // interest, and, in case + // the solution is + // vector-valued, take + // the first component of + // it: + point_value = solution(cell->vertex_dof_index(vertex,0)); + // Note that by this we + // have made an + // assumption that is not + // valid always and + // should be documented + // in the class + // declaration if this + // were code for a real + // application rather + // than a tutorial + // program: we assume + // that the finite + // element used for the + // solution we try to + // evaluate actually has + // degrees of freedom + // associated with + // vertices. This, for + // example, does not hold + // for discontinuous + // elements, were the + // support points for the + // shape functions + // happend to be located + // at the vertices, but + // are not associated + // with the vertices bur + // rather with the cell + // interior, since + // association with + // vertices would imply + // continuity there. It + // would also not hold + // for edge oriented + // elements, and the + // like. + // + // Ideally, we would + // check this at the + // beginning of the + // function, for example + // by a statement like + // ``Assert + // (dof_handler.get_fe().dofs_per_vertex + // > 0, + // ExcNotImplemented())'', + // which should make it + // quite clear what is + // going wrong when the + // exception is + // triggered. In this + // case, we omit it + // (which is indeed bad + // style), but knowing + // that that does not + // hurt here, since the + // statement + // ``cell->vertex_dof_index(vertex,0)'' + // would fail if we asked + // it to give us the DoF + // index of a vertex if + // there were none. + // + // We briefly note that + // this restriction on + // the allowed finite + // elements should be + // stated in the class + // documentation. + + evaluation_point_found = true; + break; + }; + + // Finally, we'd like to make + // sure that we have indeed found + // the evaluation point, since if + // that were not so we could not + // give a reasonable value of the + // solution there and the rest of + // the computation were useless + // anyway. So make sure through + // the ``AssertThrow'' macro + // already used in the step-9 + // program that we have indeed + // found this point. If this is + // not so, the macro throws an + // exception of the type that is + // given to it as second + // argument, but compared to a + // straightforward ``throw'' + // statement, it fills the + // exception object with a set of + // additional information, for + // example the source file and + // line number where the + // exception was generated, and + // the condition that failed. If + // you have a ``catch'' clause in + // your main function (as this + // program has), you will catch + // all exceptions that are not + // caught somewhere between and + // thus already handled, and this + // additional information will + // help you find out what + // happened and where it went + // wrong. + AssertThrow (evaluation_point_found, + ExcEvaluationPointNotFound(evaluation_point)); + + // If we are sure that we have + // found the evaluation point, we + // can add the results into the + // table of results: + results_table.add_value ("DoFs", dof_handler.n_dofs()); + results_table.add_value ("u(x_0)", point_value); + }; + + + + + // @sect4{Generating output} + + // A different, maybe slightly odd + // kind of ``evaluation'' of a + // solution is to output it to a + // file in a graphical + // format. Since in the evaluation + // functions we are given a + // ``DoFHandler'' object and the + // solution vector, we have all we + // need to do this, so we can do it + // in an evaluation class. The + // reason for actually doing so + // instead of putting it into the + // class that computed the solution + // is that this way we have more + // flexibility: if we choose to + // only output certain aspects of + // it, or not output it at all. In + // any case, we do not need to + // modify the solver class, we just + // have to modify one of the + // modules out of which we build + // this program. This form of + // encapsulation, as above, helps + // us to keep each part of the + // program rather simple as the + // interfaces are kept simple, and + // no access to hidden data is + // possible. + // + // Since this class which generates + // the output is derived from the + // common ``EvaluationBase'' base + // class, its main interface is the + // ``operator()'' + // function. Furthermore, it has a + // constructor taking a string that + // will be used as the base part of + // the file name to which output + // will be sent (we will augment it + // by a number indicating the + // number of the refinement cycle + // -- the base class has this + // information at hand --, and a + // suffix), and the constructor + // also takes a value that + // indicates which format is + // requested, i.e. for which + // graphics program we shall + // generate output (from this we + // will then also generate the + // suffix of the filename to which + // we write). + // + // Regarding the output format, the + // ``DataOutInterface'' class + // (which is a base class of + // ``DataOut'' through which we + // will access its fields) provides + // an enumeration field + // ``OutputFormat'', which lists + // names for all supported output + // formats. At the time of writing + // of this program, the supported + // graphics formats are represented + // by the enum values ``ucd'', + // ``gnuplot'', ``povray'', + // ``eps'', ``gmv'', and ``vtk'', + // but this list will certainly + // grow over time. Now, within + // various functions of that base + // class, you can use values of + // this type to get information + // about these graphics formats + // (for example the default suffix + // used for files of each format), + // and you can call a generic + // ``write'' function, which the + // branches to the + // ``write_gnuplot'', + // ``write_ucd'', etc functions + // which we have used in previous + // examples already, based on the + // value of a second argument given + // to it denoting the required + // output format. This mechanism + // makes it simple to write an + // extensible program that can + // decide which output format to + // use at runtime, and it also + // makes it rather simple to write + // the program in a way such that + // it takes advantage of newly + // implemented output formats, + // without the need to change the + // application program. + // + // Of these two fields, the base + // name and the output format + // descriptor, the constructor + // takes values and stores them for + // later use by the actual + // evaluation function. + template + class SolutionOutput : public EvaluationBase + { + public: + SolutionOutput (const std::string &output_name_base, + const typename DataOut::OutputFormat output_format); + + virtual void operator () (const DoFHandler &dof_handler, + const Vector &solution) const; + private: + const std::string output_name_base; + const typename DataOut::OutputFormat output_format; + }; + + + template + SolutionOutput:: + SolutionOutput (const std::string &output_name_base, + const typename DataOut::OutputFormat output_format) + : + output_name_base (output_name_base), + output_format (output_format) + {}; + + + // After the description above, the + // function generating the actual + // output is now relatively + // straightforward. The only + // particularly interesting feature + // over previous example programs + // is the use of the + // ``DataOut::default_suffix'' + // function, returning the usual + // suffix for files of a given + // format (e.g. ".eps" for + // encapsulated postscript files, + // ".gnuplot" for Gnuplot files), + // and of the generic + // ``DataOut::write'' function with + // a second argument, which + // branches to the actual output + // functions for the different + // graphics formats, based on the + // value of the format descriptor + // passed as second argument. + // + // The somewhat complicated use of + // the stringstream class, + // involving support from the + // preprocessor, as already + // explained in the step-5 example + // program. + template + void + SolutionOutput::operator () (const DoFHandler &dof_handler, + const Vector &solution) const + { + DataOut data_out; + data_out.attach_dof_handler (dof_handler); + data_out.add_data_vector (solution, "solution"); + data_out.build_patches (); + +#ifdef HAVE_STD_STRINGSTREAM + std::ostringstream filename; +#else + std::ostrstream filename; +#endif + filename << output_name_base << "-" + << refinement_cycle + << data_out.default_suffix (output_format) + << std::ends; +#ifdef HAVE_STD_STRINGSTREAM + std::ofstream out (filename.str().c_str()); +#else + std::ofstream out (filename.str()); +#endif + + data_out.write (out, output_format); + }; + + + // In practical applications, one + // would add here a list of other + // possible evaluation classes, + // representing quantities of + // interest that one is interested + // in. For this examples, that much + // shall be sufficient, so we close + // the namespace. +}; + + + // @sect3{The Laplace solver classes} + + // After defining what we want to + // know of the solution, we should + // now care how to get at it. We will + // pack everything we need into a + // namespace of its own, for much the + // same reasons as for the + // evaluations above. + // + // Since we have discussed Laplace + // solvers already in considerable + // detail in previous examples, the + // is not much new stuff + // following. Rather, we have to a + // great extent cannibalized previous + // examples and put them, in slightly + // different form, into this examples + // program. We will therefore mostly + // be concerned with discussing the + // differences to previous examples. + // + // Basically, as already said in the + // introduction, the lack of new + // stuff in this example is + // deliberate, as it is more to + // demonstrate software design + // practices, rather than + // mathematics. The emphasis in + // explanations below will therefore + // be more on the actual + // implementation. +namespace LaplaceSolver +{ + // @sect4{An abstract base class} + + // In defining a Laplace solver, we + // start out by declaring an + // abstract base class, that has no + // functionality itself except for + // taking and storing a pointer to + // the triangulation to be used + // later. + // + // This base class is very general, + // and could as well be used for + // any other stationary problem. It + // provides declarations of + // functions that shall, in derived + // classes, solver a problem, + // postprocess the solution with a + // list of evaluation objects, and + // refine the grid, + // respectively. None of these + // functions actually does + // something itself. + // + // Due to the lack of actual + // functionality, the programming + // style of declaring very abstract + // base classes reminds of the + // style used in Smalltalk or Java + // programs, where all classes are + // even derived from entirely + // abstract classes ``Object'', + // even number representations. The + // author admits that he does not + // particularly like the use of + // such a style in C++, as it puts + // style over reason. Furthermore, + // it promotes the use of virtual + // functions for everything (for + // example, in Java, all functions + // are virtual per se), which, + // however, has proven to be rather + // inefficient in many applications + // where functions are often only + // accessing data, not doing + // computations, and therefore + // quickly return; the overhead of + // virtual functions then can be + // significant. The opinion of the + // author is to have abstract base + // classes wherever at least some + // part of the code of actual + // implementations can be shared + // and thus separated into the base + // class. + // + // Besides all these theoretical + // questions, we here have a good + // reason, which will become + // clearer to the reader + // below. Basically, we want to be + // able to have a family of + // different Laplace solvers that + // differ so much that no larger + // common subset of functionality + // could be found. We therefore + // just declare such an abstract + // base class, taking a pointer to + // a triangulation in the + // constructor and storing it + // henceforth. Since this + // triangulation will be used + // throughout all computations, we + // have to make sure that the + // triangulation exists until the + // destructor exits. We do this by + // keeping a ``SmartPointer'' to + // this triangulation, which uses a + // counter in the triangulation + // class to denote the fact that + // there is still an object out + // there using this triangulation, + // thus leading to an abort in case + // the triangulation is attempted + // to be destructed while this + // object still uses it. + // + // Note that while the pointer + // itself is declared constant + // (i.e. throughout the lifetime of + // this object, the pointer points + // to the same object), it is not + // declared as a pointer to a + // constant triangulation. In fact, + // by this we allow that derived + // classes refine or coarsen the + // triangulation within the + // ``refine_grid'' function. + template + class Base + { + public: + Base (Triangulation &coarse_grid); + virtual ~Base (); + + virtual void solve_problem () = 0; + virtual void postprocess (const Evaluation::EvaluationBase &postprocessor) const = 0; + virtual void refine_grid () = 0; + + protected: + const SmartPointer > triangulation; + }; + + + // The implementation of the only + // two non-abstract functions is + // then rather boring: + template + Base::Base (Triangulation &coarse_grid) + : + triangulation (&coarse_grid) + {}; + + + template + Base::~Base () + {}; + + + // @sect3{A general solver class} + + // Following now the main class + // that implements assembling the + // matrix of the linear system, + // solving it, and calling the + // postprocessor objects on the + // solution. It implements the + // ``solve_problem'' and + // ``postprocess'' functions + // declared in the base class. It + // does not, however, implement the + // ``refine_grid'' method, as mesh + // refinement will be implemented + // in a number of derived classes. + // + // It also declares a new abstract + // virtual function, + // ``assemble_rhs'', that needs to + // be overloaded in subclasses. The + // reason is that we will implement + // two different classes that will + // implement different methods to + // assemble the right hand side + // vector. This function might also + // be interesting in cases where + // the right hand side depends not + // simply on a continuous function, + // but on something else as well, + // for example the solution of + // another discretized problem, + // etc. The latter happens + // frequently in non-linear + // problems. + template + class Solver : public virtual Base + { + public: + Solver (Triangulation &triangulation, + const FiniteElement &fe, + const Function &boundary_values); + virtual ~Solver (); + virtual void solve_problem (); + virtual void postprocess (const Evaluation::EvaluationBase &postprocessor) const; + + protected: + const SmartPointer > fe; + DoFHandler dof_handler; + Vector solution; + const SmartPointer > boundary_values; + + virtual void assemble_rhs (Vector &rhs) const = 0; + + private: + struct LinearSystem + { + LinearSystem (const DoFHandler &dof_handler); + + void solve (Vector &solution) const; + + ConstraintMatrix hanging_node_constraints; + SparsityPattern sparsity_pattern; + SparseMatrix matrix; + Vector rhs; + }; + + void assemble_linear_system (LinearSystem &linear_system); + + void assemble_matrix (LinearSystem &linear_system, + const DoFHandler::active_cell_iterator &begin_cell, + const DoFHandler::active_cell_iterator &end_cell, + Threads::ThreadMutex &mutex) const ; + }; + + + + + template + Solver::Solver (Triangulation &triangulation, + const FiniteElement &fe, + const Function &boundary_values) + : + Base (triangulation), + fe (&fe), + dof_handler (triangulation), + boundary_values (&boundary_values) + {}; + + + template + Solver::~Solver () + { + dof_handler.clear (); + }; + + + + template + void + Solver::solve_problem () + { + dof_handler.distribute_dofs (*fe); + solution.reinit (dof_handler.n_dofs()); + + LinearSystem linear_system (dof_handler); + assemble_linear_system (linear_system); + linear_system.solve (solution); + }; + + + + template + Solver::LinearSystem:: + LinearSystem (const DoFHandler &dof_handler) + { + hanging_node_constraints.clear (); + DoFTools::make_hanging_node_constraints (dof_handler, + hanging_node_constraints); + hanging_node_constraints.close (); + + sparsity_pattern.reinit (dof_handler.n_dofs(), + dof_handler.n_dofs(), + dof_handler.max_couplings_between_dofs()); + DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); + + hanging_node_constraints.condense (sparsity_pattern); + + sparsity_pattern.compress(); + + matrix.reinit (sparsity_pattern); + rhs.reinit (dof_handler.n_dofs()); + }; + + + + template + void + Solver::assemble_linear_system (LinearSystem &linear_system) + { + typedef typename DoFHandler::active_cell_iterator active_cell_iterator; + + const unsigned int n_threads = multithread_info.n_default_threads; + std::vector > + thread_ranges + = Threads::split_range (dof_handler.begin_active (), + dof_handler.end (), + n_threads); + Threads::ThreadMutex mutex; + Threads::ThreadManager thread_manager; + for (unsigned int thread=0; thread::assemble_matrix) + .collect_args (this, + linear_system, + thread_ranges[thread].first, + thread_ranges[thread].second, + mutex)); + assemble_rhs (linear_system.rhs); + linear_system.hanging_node_constraints.condense (linear_system.rhs); + + thread_manager.wait (); + linear_system.hanging_node_constraints.condense (linear_system.matrix); + + std::map boundary_value_map; + VectorTools::interpolate_boundary_values (dof_handler, + 0, + *boundary_values, + boundary_value_map); + MatrixTools::apply_boundary_values (boundary_value_map, + linear_system.matrix, + solution, + linear_system.rhs); + + }; + + + template + void + Solver::assemble_matrix (LinearSystem &linear_system, + const DoFHandler::active_cell_iterator &begin_cell, + const DoFHandler::active_cell_iterator &end_cell, + Threads::ThreadMutex &mutex) const + { + //TODO: adaptive + QGauss4 quadrature_formula; + + FEValues fe_values (*fe, quadrature_formula, + UpdateFlags(update_gradients | + update_JxW_values)); + + const unsigned int dofs_per_cell = fe->dofs_per_cell; + const unsigned int n_q_points = quadrature_formula.n_quadrature_points; + + FullMatrix cell_matrix (dofs_per_cell, dofs_per_cell); + + std::vector local_dof_indices (dofs_per_cell); + + for (typename DoFHandler::active_cell_iterator cell=begin_cell; + cell!=end_cell; ++cell) + { + cell_matrix.clear (); + + fe_values.reinit (cell); + const std::vector > > + & shape_grads = fe_values.get_shape_grads(); + const std::vector + & JxW_values = fe_values.get_JxW_values(); + + for (unsigned int q_point=0; q_pointget_dof_indices (local_dof_indices); + mutex.acquire (); + for (unsigned int i=0; i + void + Solver::LinearSystem::solve (Vector &solution) const + { + SolverControl solver_control (1000, 1e-12); + PrimitiveVectorMemory<> vector_memory; + SolverCG<> cg (solver_control, vector_memory); + + PreconditionSSOR<> preconditioner; + preconditioner.initialize(matrix, 1.2); + + cg.solve (matrix, solution, rhs, preconditioner); + + hanging_node_constraints.distribute (solution); + }; + + + + template + void + Solver:: + postprocess (const Evaluation::EvaluationBase &postprocessor) const + { + postprocessor (dof_handler, solution); + }; + + +//---------------------------------------------------------- + + template + class PrimalSolver : public Solver + { + public: + PrimalSolver (Triangulation &triangulation, + const FiniteElement &fe, + const Function &rhs_function, + const Function &boundary_values); + protected: + const SmartPointer > rhs_function; + virtual void assemble_rhs (Vector &rhs) const; + }; + + + + template + PrimalSolver:: + PrimalSolver (Triangulation &triangulation, + const FiniteElement &fe, + const Function &rhs_function, + const Function &boundary_values) + : + Base (triangulation), + Solver (triangulation, fe, boundary_values), + rhs_function (&rhs_function) + {}; + + + + template + void + PrimalSolver:: + assemble_rhs (Vector &rhs) const + { + //TODO: adaptive + QGauss4 quadrature_formula; + + FEValues fe_values (*fe, quadrature_formula, + UpdateFlags(update_values | + update_q_points | + update_JxW_values)); + + const unsigned int dofs_per_cell = fe->dofs_per_cell; + const unsigned int n_q_points = quadrature_formula.n_quadrature_points; + + Vector cell_rhs (dofs_per_cell); + std::vector rhs_values (n_q_points); + std::vector local_dof_indices (dofs_per_cell); + + typename DoFHandler::active_cell_iterator + cell = dof_handler.begin_active(), + endc = dof_handler.end(); + for (; cell!=endc; ++cell) + { + cell_rhs.clear (); + + fe_values.reinit (cell); + const FullMatrix + & shape_values = fe_values.get_shape_values(); + const std::vector + & JxW_values = fe_values.get_JxW_values(); + const std::vector > + & q_points = fe_values.get_quadrature_points(); + + rhs_function->value_list (q_points, rhs_values); + + for (unsigned int q_point=0; q_pointget_dof_indices (local_dof_indices); + for (unsigned int i=0; i + class RefinementKelly : public PrimalSolver + { + public: + RefinementKelly (Triangulation &coarse_grid, + const FiniteElement &fe, + const Function &rhs_function, + const Function &boundary_values); + + virtual void refine_grid (); + }; + + + + template + RefinementKelly:: + RefinementKelly (Triangulation &coarse_grid, + const FiniteElement &fe, + const Function &rhs_function, + const Function &boundary_values) + : + Base (coarse_grid), + PrimalSolver (coarse_grid, fe, rhs_function, boundary_values) + {}; + + + + template + void + RefinementKelly::refine_grid () + { + Vector estimated_error_per_cell (triangulation->n_active_cells()); + KellyErrorEstimator::estimate (dof_handler, + QGauss3(), + typename FunctionMap::type(), + solution, + estimated_error_per_cell); + GridRefinement::refine_and_coarsen_fixed_number (*triangulation, + estimated_error_per_cell, + 0.3, 0.03); + triangulation->execute_coarsening_and_refinement (); + }; + + + +//---------------------------------------------------------- + + template + class RefinementGlobal : public PrimalSolver + { + public: + RefinementGlobal (Triangulation &coarse_grid, + const FiniteElement &fe, + const Function &rhs_function, + const Function &boundary_values); + + virtual void refine_grid (); + }; + + + + template + RefinementGlobal:: + RefinementGlobal (Triangulation &coarse_grid, + const FiniteElement &fe, + const Function &rhs_function, + const Function &boundary_values) + : + Base (coarse_grid), + PrimalSolver (fe, rhs_function, boundary_values) + {}; + + + + template + void + RefinementGlobal::refine_grid () + { + triangulation->refine_global (1); + }; +}; + + + + + // @sect3{Equation data} + + // As this is one more academic + // example, we'd like to compare + // exact and computed solution + // against each other. For this, we + // need to declare function classes + // representing the exact solution + // (for comparison and for the + // Dirichlet boundary values), as + // well as a class that denotes the + // right hand side of the equation + // (this is simply the Laplace + // operator applied to the exact + // solution we'd like to recover). + // + // For this example, let us choose as + // exact solution the function + // u(x,y)=exp(x+sin(10y+5x^2)). In more + // than two dimensions, simply repeat + // the sine-factor with ``y'' + // replaced by ''z'' and so on. Given + // this, the following two classes + // are probably straightforward from + // the previous examples. +template +class Solution : public Function +{ + public: + virtual double value (const Point &p, + const unsigned int component) const; +}; + + +template +double +Solution::value (const Point &p, + const unsigned int /*component*/) const +{ + double q = p(0); + for (unsigned int i=1; i +class RightHandSide : public Function +{ + public: + virtual double value (const Point &p, + const unsigned int component) const; +}; + + +template +double +RightHandSide::value (const Point &p, + const unsigned int /*component*/) const +{ + double q = p(0); + for (unsigned int i=1; i +void +run_simulation (LaplaceSolver::Base &solver, + const std::list *> &postprocessor_list) +{ + const unsigned int max_steps = 10; + for (unsigned int step=0; step *>::const_iterator + i = postprocessor_list.begin(); + i != postprocessor_list.end(); ++i) + { + (*i)->set_refinement_cycle (step); + solver.postprocess (**i); + }; + + if (step!=max_steps-1) + solver.refine_grid (); + }; +}; + + +template +void solve_problem_kelly () +{ + Triangulation triangulation; + GridGenerator::hyper_cube (triangulation, -1, 1); + triangulation.refine_global (2); + FE_Q fe(1); + const RightHandSide rhs_function; + const Solution boundary_values; + + LaplaceSolver::RefinementKelly kelly (triangulation, fe, + rhs_function, + boundary_values); + TableHandler results_table; + + Evaluation::PointValueEvaluation + postprocessor1 (Point(.5,.5), results_table); + Evaluation::SolutionOutput + postprocessor2 ("solution-kelly", DataOut::gnuplot); + std::list *> postprocessor_list; + postprocessor_list.push_back (&postprocessor1); + postprocessor_list.push_back (&postprocessor2); + + run_simulation (kelly, postprocessor_list); + + results_table.write_text (std::cout); +}; + + + +int main () +{ + try + { + deallog.depth_console (0); + + solve_problem_kelly<2> (); + } + catch (std::exception &exc) + { + std::cerr << std::endl << std::endl + << "----------------------------------------------------" + << std::endl; + std::cerr << "Exception on processing: " << std::endl + << exc.what() << std::endl + << "Aborting!" << std::endl + << "----------------------------------------------------" + << std::endl; + return 1; + } + catch (...) + { + std::cerr << std::endl << std::endl + << "----------------------------------------------------" + << std::endl; + std::cerr << "Unknown exception!" << std::endl + << "Aborting!" << std::endl + << "----------------------------------------------------" + << std::endl; + return 1; + }; + + return 0; +}; -- 2.39.5