From 9cb3371e3cce3b4626c0ec88cb656baab6422f6b Mon Sep 17 00:00:00 2001 From: Fabian Castelli Date: Tue, 12 Jul 2022 08:40:29 +0200 Subject: [PATCH] Fix label fo bibtex entry --- doc/doxygen/references.bib | 2 +- examples/step-47/doc/results.dox | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/doc/doxygen/references.bib b/doc/doxygen/references.bib index 73ac933db3..6ee00d582f 100644 --- a/doc/doxygen/references.bib +++ b/doc/doxygen/references.bib @@ -487,7 +487,7 @@ url = {https://doi.org/10.1016/s0045-7825(02)00286-4} } -@article{Brenner2009, +@article{Brenner2010, author = {S.C. Brenner and T. Gudi and L.-Y. Sung}, title = {An a posteriori error estimator for a quadratic {$C^0$}-interior penalty method for the biharmonic problem}, journal = {IMA Journal of Numerical Analysis}, diff --git a/examples/step-47/doc/results.dox b/examples/step-47/doc/results.dox index aad6e16875..ff93a49a18 100644 --- a/examples/step-47/doc/results.dox +++ b/examples/step-47/doc/results.dox @@ -13,7 +13,7 @@ $Q_3$; and 5, 4, 3 for $Q_4$, respectively. From the literature, it is not immediately clear what the penalty parameter $\gamma$ should be. For example, -@cite Brenner2009 state that it needs to be larger than one, and +@cite Brenner2010 state that it needs to be larger than one, and choose $\gamma=5$. The FEniCS/Dolphin tutorial chooses it as $\gamma=8$, see https://fenicsproject.org/docs/dolfin/1.6.0/python/demo/documented/biharmonic/python/documentation.html -- 2.39.5