From d0cb4a1d0c6b82948d80e1f422b4489406d5421e Mon Sep 17 00:00:00 2001 From: Timo Heister Date: Tue, 18 Jun 2024 11:32:11 -0400 Subject: [PATCH] fix a bunch of latex formula errors --- .../automatic_and_symbolic_differentiation.h | 2 +- doc/doxygen/options.dox.in | 1 + examples/step-24/doc/intro.dox | 1 - examples/step-33/step-33.cc | 24 +++++++++---------- examples/step-42/doc/intro.dox | 4 ++-- examples/step-56/step-56.cc | 3 +-- examples/step-79/doc/intro.dox | 2 -- examples/step-81/doc/intro.dox | 8 +++---- examples/step-87/doc/intro.dox | 2 +- examples/step-87/step-87.cc | 2 +- include/deal.II/fe/fe_coupling_values.h | 6 ++--- include/deal.II/integrators/maxwell.h | 6 +++-- 12 files changed, 29 insertions(+), 32 deletions(-) diff --git a/doc/doxygen/headers/automatic_and_symbolic_differentiation.h b/doc/doxygen/headers/automatic_and_symbolic_differentiation.h index 595ce3ce47..b4d224714e 100644 --- a/doc/doxygen/headers/automatic_and_symbolic_differentiation.h +++ b/doc/doxygen/headers/automatic_and_symbolic_differentiation.h @@ -185,7 +185,7 @@ * } * @endcode * - * ### Exploitation of the chain-rule + * @subsection Exploitation of the chain-rule * * In the most practical sense, any of the above categories exploit the chain-rule to compute the total * derivative of a composite function. To perform this action, they typically use one of two mechanisms to diff --git a/doc/doxygen/options.dox.in b/doc/doxygen/options.dox.in index 82d336b9ee..5c18ab8705 100644 --- a/doc/doxygen/options.dox.in +++ b/doc/doxygen/options.dox.in @@ -190,6 +190,7 @@ PREDEFINED = DOXYGEN=1 \ DEAL_II_ADOLC_WITH_ADVANCED_BRANCHING=1 \ DEAL_II_ADOLC_WITH_ATRIG_ERF=1 \ DEAL_II_ADOLC_WITH_TAPELESS_REFCOUNTING=1 \ + DEAL_II_CXX20_REQUIRES(x)= \ DEAL_II_DEPRECATED_EARLY= \ DEAL_II_DEPRECATED_EARLY_WITH_COMMENT(x)= \ DEAL_II_WITH_ARBORX=1 \ diff --git a/examples/step-24/doc/intro.dox b/examples/step-24/doc/intro.dox index 21567432c5..77096c63d4 100644 --- a/examples/step-24/doc/intro.dox +++ b/examples/step-24/doc/intro.dox @@ -156,7 +156,6 @@ From this we obtain the discrete model by introducing a finite number of shape functions, and get @f{eqnarray*}{ M\bar{p}^{n}-k \theta M v^n & = & M\bar{p}^{n-1}+k (1-\theta)Mv^{n-1},\\ - (-c_0^2k \theta A-c_0 B)\bar{p}^n-Mv^{n} & = & (c_0^2k(1-\theta)A-c_0B)\bar{p}^{n-1}-Mv^{n-1}+c_0^2k(\theta F^{n}+(1-\theta)F^{n-1}). @f} diff --git a/examples/step-33/step-33.cc b/examples/step-33/step-33.cc index e7a683174f..aa34727548 100644 --- a/examples/step-33/step-33.cc +++ b/examples/step-33/step-33.cc @@ -1631,7 +1631,7 @@ namespace Step33 // $\mathbf{z}_i$ is the $i$th vector valued test function. // Furthermore, the scalar product // $\left(\mathbf{F}(\mathbf{w}), \nabla\mathbf{z}_i\right)_K$ is - // understood as $\int_K \sum_{c=1}^{\text{n_components}} + // understood as $\int_K \sum_{c=1}^{\text{n\_components}} // \sum_{d=1}^{\text{dim}} \mathbf{F}(\mathbf{w})_{cd} // \frac{\partial z^c_i}{x_d}$ where $z^c_i$ is the $c$th component of // the $i$th test function. @@ -1810,21 +1810,21 @@ namespace Step33 // @f{eqnarray*}{ // R_i &=& // \left(\frac{(\mathbf{w}_{n+1} - - // \mathbf{w}_n)_{\text{component_i}}}{\delta - // t},(\mathbf{z}_i)_{\text{component_i}}\right)_K + // \mathbf{w}_n)_{\text{component\_i}}}{\delta + // t},(\mathbf{z}_i)_{\text{component\_i}}\right)_K // \\ &-& \sum_{d=1}^{\text{dim}} \left( \theta \mathbf{F} - // ({\mathbf{w}^k_{n+1}})_{\text{component_i},d} + (1-\theta) - // \mathbf{F} ({\mathbf{w}_{n}})_{\text{component_i},d} , - // \frac{\partial(\mathbf{z}_i)_{\text{component_i}}} {\partial + // ({\mathbf{w}^k_{n+1}})_{\text{component\_i},d} + (1-\theta) + // \mathbf{F} ({\mathbf{w}_{n}})_{\text{component\_i},d} , + // \frac{\partial(\mathbf{z}_i)_{\text{component\_i}}} {\partial // x_d}\right)_K // \\ &+& \sum_{d=1}^{\text{dim}} h^{\eta} \left( \theta \frac{\partial - // (\mathbf{w}^k_{n+1})_{\text{component_i}}}{\partial x_d} + (1-\theta) - // \frac{\partial (\mathbf{w}_n)_{\text{component_i}}}{\partial x_d} , - // \frac{\partial (\mathbf{z}_i)_{\text{component_i}}}{\partial x_d} + // (\mathbf{w}^k_{n+1})_{\text{component\_i}}}{\partial x_d} + (1-\theta) + // \frac{\partial (\mathbf{w}_n)_{\text{component\_i}}}{\partial x_d} , + // \frac{\partial (\mathbf{z}_i)_{\text{component\_i}}}{\partial x_d} // \right)_K - // \\ &-& \left( \theta\mathbf{G}({\mathbf{w}^k_n+1} )_{\text{component_i}} - // + (1-\theta)\mathbf{G}({\mathbf{w}_n})_{\text{component_i}} , - // (\mathbf{z}_i)_{\text{component_i}} \right)_K , + // \\ &-& \left( \theta\mathbf{G}({\mathbf{w}^k_n+1} )_{\text{component\_i}} + // + (1-\theta)\mathbf{G}({\mathbf{w}_n})_{\text{component\_i}} , + // (\mathbf{z}_i)_{\text{component\_i}} \right)_K , // @f} // where integrals are // understood to be evaluated through summation over quadrature points. diff --git a/examples/step-42/doc/intro.dox b/examples/step-42/doc/intro.dox index 6a240b0a31..7181252e7a 100644 --- a/examples/step-42/doc/intro.dox +++ b/examples/step-42/doc/intro.dox @@ -321,7 +321,7 @@ method for the contact. It works as follows: Here, $P_{\mathcal{A}}(U)$ is the projection of the active components in $\mathcal{A}$ to the gap - @f{gather*}P_{\mathcal{A}}(U)_p \dealcoloneq \begin{cases}{ + @f{gather*}P_{\mathcal{A}}(U)_p \dealcoloneq \begin{cases} U_p, & \textrm{if}\quad p\notin\mathcal{A}\\ g_{h,p}, & \textrm{if}\quad p\in\mathcal{A}, @@ -346,7 +346,7 @@ we can choose $B$ to be a matrix that has only one entry per row, set strategy for non-linear multibody contact problems, Comput. Methods Appl. Mech. Engrg. 194, 2005, pp. 3147-3166). The vector $G$ is defined by a suitable approximation $g_h$ of the gap $g$ -@f{gather*}G_p = \begin{cases}{ +@f{gather*}G_p = \begin{cases} g_{h,p}, & \text{if}\quad p\in\mathcal{S}\\ 0, & \text{if}\quad p\notin\mathcal{S}. \end{cases}@f} diff --git a/examples/step-56/step-56.cc b/examples/step-56/step-56.cc index 7a46946c5d..6eb6cba25a 100644 --- a/examples/step-56/step-56.cc +++ b/examples/step-56/step-56.cc @@ -451,8 +451,7 @@ namespace Step56 , solver_type(solver_type) , triangulation(Triangulation::maximum_smoothing) , - // Finite element for the velocity only -- we choose the - // $Q_{\text{pressure_degree}}^d$ element: + // Finite element for the velocity only: velocity_fe(FE_Q(pressure_degree + 1) ^ dim) , // Finite element for the whole system: diff --git a/examples/step-79/doc/intro.dox b/examples/step-79/doc/intro.dox index ab50afafea..7ca92ac3fb 100644 --- a/examples/step-79/doc/intro.dox +++ b/examples/step-79/doc/intro.dox @@ -100,7 +100,6 @@ following: 0<\rho_{\min}\leq \rho(x) \leq 1, @f] @f[ - \nabla \cdot \boldsymbol{\sigma}(\rho) + \mathbf{F} = 0 \quad \text{on } \Omega @f] The final constraint, the balance of linear momentum (which we will refer to as the elasticity equation), @@ -300,7 +299,6 @@ where forces are applied, and Neumann boundary conditions are used. @f[ \int_\Omega -d_\varrho z_1 + d_\varrho z_2 + H(d_\varrho)y_2 d\Omega= 0\;\;\forall d_\varrho - @f]
  • Primal Feasibility: diff --git a/examples/step-81/doc/intro.dox b/examples/step-81/doc/intro.dox index 6c0476378d..1a165340e7 100644 --- a/examples/step-81/doc/intro.dox +++ b/examples/step-81/doc/intro.dox @@ -184,16 +184,14 @@ $\varepsilon_0$ and $\mu_0$ as We use the free-space wave number $k_0 = \omega\sqrt{\varepsilon_0\mu_0}$ and the dipole strength, $J_0$ to arrive at the following rescaling of the vector fields and coordinates: -@f[ -\begin{align*} +@f{align*}{ \hat{x} = k_0x, &\qquad \hat{\nabla} = \frac{1}{k_0}\nabla,\\ \hat{\mathbf{H}} = \frac{k_0}{J_0}\mu^{-1}\mathbf{H},&\qquad \hat{\mathbf{E}} = \frac{k_0^2}{\omega\mu_0 J_0}\mathbf{E},\\ \hat{\mathbf{J}}_a = \frac{1}{J_0}\mathbf{J}_a,&\qquad \hat{\mathbf{M}}_a = \frac{k_0}{\omega\mu_0 J_0}\mathbf{M}_a. -\end{align*} -@f] +@f} Finally, the interface conductivity is rescaled as @f[ @@ -286,7 +284,7 @@ i\int_\Omega \mathbf{J}_a \cdot \bar{\varphi}\;\text{d}x Assume that $\sigma_r^{\Sigma} \in L^{\infty}(\Sigma)^{2\times 2}$ is matrix-valued and symmetric, and has a semidefinite real and complex part. Let $\varepsilon_r$ -be a smooth scalar function with $–\text{Im}(\varepsilon_r) = 0$, or +be a smooth scalar function with $-\text{Im}(\varepsilon_r) = 0$, or $\text{Im}(\varepsilon_r)\ge c > 0$ in $\Omega$. $\mu_r^{-1}$ is a smooth scalar such that $\sqrt{\mu_r^{-1}\varepsilon_r}$ is real valued and strictly positive in $\partial\Omega$. diff --git a/examples/step-87/doc/intro.dox b/examples/step-87/doc/intro.dox index 3dc26e7794..027b26462c 100644 --- a/examples/step-87/doc/intro.dox +++ b/examples/step-87/doc/intro.dox @@ -44,7 +44,7 @@ the evaluation of the solution at an arbitrary point boils down to a cell-local evaluation @f[ u(\boldsymbol{x}_q) = \sum_{i} \hat{N}^K_i(\hat{\boldsymbol{x}}_q) u_i^K -\quad\text{with}\quad i\in[0,n_{\text{dofs_per_cell}}), +\quad\text{with}\quad i\in[0,n_{\text{dofs\_per\_cell}}), @f] with $\hat{N}^K_i$ being the shape functions defined on the reference cell and $u_i^{K}$ the solution coefficients diff --git a/examples/step-87/step-87.cc b/examples/step-87/step-87.cc index 2e1451aebc..18210625d0 100644 --- a/examples/step-87/step-87.cc +++ b/examples/step-87/step-87.cc @@ -866,7 +866,7 @@ namespace Step87 // = // \sum_i\text{tr}\left({\nabla \boldsymbol{N}_i (\boldsymbol{x}_q) // \boldsymbol n_i}\right) - // \;\text{with}\; i\in[0,n_{\text{dofs_per_cell}}), + // \;\text{with}\; i\in[0,n_{\text{dofs\_per\_cell}}), // @f] // which we can apply since the immersed mesh is consistently // orientated. The surface tension coefficient is set to 1 for the diff --git a/include/deal.II/fe/fe_coupling_values.h b/include/deal.II/fe/fe_coupling_values.h index 2ed108beec..b7c5a28dcd 100644 --- a/include/deal.II/fe/fe_coupling_values.h +++ b/include/deal.II/fe/fe_coupling_values.h @@ -519,12 +519,12 @@ enum class QuadratureCouplingType * * \f[ * \phi_{1,i}(x) = \begin{cases} v_i(x) & \text{ if } i \in [0,n_l) \\ - * 0 & \text{ if ) i \in [n_1, n_1+n_2] \end{cases},\quad \phi_{1,i}(x) = + * 0 & \text{ if } i \in [n_1, n_1+n_2] \end{cases},\quad \phi_{1,i}(x) = * \begin{cases} 0(x) & \text{ if } i \in [0,n_1) \\ - * w_{i-n_1}(x) & \text{ if ) i \in [n_1, n_1+n_2] \end{cases}, + * w_{i-n_1}(x) & \text{ if } i \in [n_1, n_1+n_2] \end{cases}, * \f] * - * where $phi_{1,i}$ is the first basis function with index $i$ and $n_{1,2}$ + * where $\phi_{1,i}$ is the first basis function with index $i$ and $n_{1,2}$ * are the number of local dofs on the first and second FEValuesBase objects. * * This enum is used in the constructor of FECouplingValues to specify how to diff --git a/include/deal.II/integrators/maxwell.h b/include/deal.II/integrators/maxwell.h index 7d2d0239af..93e1f67c52 100644 --- a/include/deal.II/integrators/maxwell.h +++ b/include/deal.II/integrators/maxwell.h @@ -72,7 +72,9 @@ namespace LocalIntegrators * \partial_1\partial_2 u_2 - \partial_2^2 u_1 \\ * \partial_1\partial_2 u_1 - \partial_1^2 u_2 * \end{pmatrix} - * + * @f] + * and + * @f[ * \nabla\times\nabla\times \mathbf u = \begin{pmatrix} * \partial_1\partial_2 u_2 + \partial_1\partial_3 u_3 * - (\partial_2^2+\partial_3^2) u_1 \\ @@ -80,7 +82,7 @@ namespace LocalIntegrators * - (\partial_3^2+\partial_1^2) u_2 \\ * \partial_3\partial_1 u_1 + \partial_3\partial_2 u_2 * - (\partial_1^2+\partial_2^2) u_3 - * \end{pmatrix} + * \end{pmatrix}. * @f] * * @note The third tensor argument is not used in two dimensions and can -- 2.39.5